Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Strong limit theorems for orthogonal sequences in von Neumann algebras

Author: R. Jajte
Journal: Proc. Amer. Math. Soc. 94 (1985), 229-235
MSC: Primary 46L50; Secondary 60B12, 82A15
MathSciNet review: 784169
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ A$ be a von Neumann algebra with a faithful normal state $ \phi $. It is shown that if a sequence $ ({x_n})$ in $ A$ is orthogonal relative to $ \phi $ and satisfies the condition

$\displaystyle \sum\limits_{k} {\phi (\vert{x_k}{\vert^2}){{\left( {\frac{{\log k}}{k}} \right)}^2} < \infty ,} $

then $ {}_n^1\sum\nolimits_{k = 1}^n {{x_k} \to 0} $ almost uniformly in $ A$. Some other results related to this theorem are also discussed.

References [Enhancements On Off] (What's this?)

  • [1] L. Acardi, A. Frigerio and J. T. Lewis, Quantum stochastic processes, Comm. Dublin Inst. Adv. Stud. Ser. A 29 (1980).
  • [2] G. Alexits, Convergence problems of orthogonal series, Pergamon Press, New York, Oxford and Paris, 1961. MR 0218827 (36:1911)
  • [3] C. J. K. Batty, The strong law of large numbers for states and traces of a $ {W^ * }$-algebra, Z. Wahrsch. Verw. Gebiete 48 (1979), 117-191. MR 534843 (80k:46073)
  • [4] N. Dang-Ngoc, Pointwise convergence of martingales in von Neumann algebras, Israel J. Math. 34 (1979), 273-280. MR 570886 (81g:46091)
  • [5] M. S. Goldstein, Theorems on almost everywhere convergence in von Neumann algebras, J. Operator Theory 6 (1981), 233-311. (Russian) MR 643693 (84g:46096)
  • [6] B. Kümmerer, A non-commutative individual ergodic theorem, Invent. Math. 46 (1978), 139-145. MR 0482260 (58:2336)
  • [7] E. C. Lance, Ergodic theorems for convex sets and operator algebras, Invent. Math. 37 (1976), 201-214. MR 0428060 (55:1089)
  • [8] A. Łuczak, Some limit theorems in von Neumann algebras, preprint.
  • [9] A. R. Padmanabhan, Convergence in measure and related results in finite rings of operators, Trans. Amer. Math. Soc. 128 (1967), 359-378. MR 0212581 (35:3452)
  • [10] M. Plancherel, Sur la convergence des series de fonctions orthogonal, C. R. Acad. Sci. Paris 157 (1913), 270-278.
  • [11] M. Takesaki, Theory of operator algebras. I, Springer-Verlag, Berlin, Heidelberg and New York, 1979. MR 548728 (81e:46038)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46L50, 60B12, 82A15

Retrieve articles in all journals with MSC: 46L50, 60B12, 82A15

Additional Information

Keywords: von Neumann algebras, faithful normal state, orthogonal sequences, independent sequences, almost uniform convergence, almost complete convergence, strong law of large numbers
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society