Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

On the existence of uniformly consistent estimates


Author: Yannis G. Yatracos
Journal: Proc. Amer. Math. Soc. 94 (1985), 479-486
MSC: Primary 62G05; Secondary 62E20
MathSciNet review: 787899
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \mathcal{M}$ be a family of probability measures on $ (\mathfrak{X},\mathcal{A})$ and $ U$ the uniform structure defined by vicinities of the form

$\displaystyle \left\{ (P, Q):\sup\limits_{1 \leqslant i \leqslant K} \vert P^n(A_{i,n}) - Q^n(A_{i,n}) \vert < \varepsilon \right\},$

where $ {P^n}$ is the product measure on $ ({\mathfrak{X}^n},{\mathcal{A}^n}),{A_{i,n}} \in {\mathcal{A}^n},\varepsilon > 0,n \wedge K \geqslant 1$. Let $ {\phi ^ * }:(\mathcal{M},U) \to ({\phi ^ * }(\mathcal{M}),d)$, where

$\displaystyle d\left(\phi^*(P), \phi^*(Q) \right) = \vert\vert P - Q\vert\vert _{L_1} = 2\sup\limits_{A \in \mathcal{A}} \vert P(A) - Q(A)\vert.$

We consider the case where the space of measures $ M$ is $ {L_1}$ separable and relate the existence of uniformly consistent estimates for $ {\phi ^ * }(P)$ with uniform continuity of $ {\phi ^ * }$ and $ {L_1}$-total boundedness of $ M$.


References [Enhancements On Off] (What's this?)

  • [G] Choquet [1969], Lectures on analysis, Vol. I, Chapter 2, §5, Benjamin, New York.
  • [E] Einar Hille and Ralph S. Phillips, Functional analysis and semi-groups, American Mathematical Society Colloquium Publications, vol. 31, American Mathematical Society, Providence, R. I., 1957. rev. ed. MR 0089373 (19,664d)
  • [W] Wassily Hoeffding and J. Wolfowitz, Distinguishability of sets of distributions. (The case of independent and identically distributed chance variables), Ann. Math. Statist. 29 (1958), 700–718. MR 0095555 (20 #2057)
  • [C] Charles Kraft, Some conditions for consistency and uniform consistency of statistical procedures, Univ. California Publ. Statist. 2 (1955), 125–141. MR 0073896 (17,505a)
  • [L] Lucien Le Cam and Lorraine Schwartz, A necessary and sufficient condition for the existence of consistent estimates, Ann. Math. Statist. 31 (1960), 140–150. MR 0142178 (25 #5571)
  • [R] Moché [1977], Thèse de Doctorat d'Etat, Université de Lille, France.
  • [J] J. Pfanzagl, On the existence of consistent estimates and tests, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 10 (1968), 43–62. MR 0233453 (38 #1775)
  • [Y] G. Yatracos [1983], Uniformly consistent estimates and rates of convergence via minimum distance methods, Ph.D. Thesis, Univ. of California, Berkeley, Calif.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 62G05, 62E20

Retrieve articles in all journals with MSC: 62G05, 62E20


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1985-0787899-6
PII: S 0002-9939(1985)0787899-6
Keywords: Uniformly consistent estimation of a functional of a measure, $ {L_1}$ total boundedness of the space of measures, minimum distance estimation
Article copyright: © Copyright 1985 American Mathematical Society