Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Brauer group of fibrations and symmetric products of curves


Author: Georges Elencwajg
Journal: Proc. Amer. Math. Soc. 94 (1985), 597-602
MSC: Primary 32L05; Secondary 14F05
DOI: https://doi.org/10.1090/S0002-9939-1985-0792268-9
MathSciNet review: 792268
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Given a holomorphic fibering with fibre $ {{\mathbf{P}}_n}$, we compare the cohomological Brauer group of the base to that of the total space. This allows us to prove that the geometric Brauer group of any symmetric product of a Riemann surface coincides with the cohomological one.


References [Enhancements On Off] (What's this?)

  • [ELEN] G. Elencwajg, The Brauer group in complex geometry, Brauer Groups in Ring Theory and Algebraic Geometry, Lecture Notes in Math., vol. 917, Springer-Verlag, Berlin, 1982, pp. 222-230. MR 657432 (83k:32042)
  • [ELEN-NARA] G. Elencwajg and M. S. Narasimhan, Projective bundles on a complex torus, J. Reine Angew. Math. 340 (1983), 1-5. MR 691957 (84h:32034)
  • [IGAB] O. Gabber, Some theorems on Azumaya algebras, Lecture Notes in Math., vol. 844, Springer-Verlag, Berlin and New York, 1981, pp. 129-209. MR 611868 (83d:13004)
  • [GROT] A. Grothendieck, Le groupe de Brauer. I, II, III, Dix Exposés sur la Cohomologie des Schémas, Masson, Paris, and North-Holland, Amsterdam, 1968.
  • [HOOB] R. Hoobler, Brauer groups of abelian schemes, Ann. Sci. Ecole. Norm. Sup. (4) 5 (1972), 45-70. MR 0311664 (47:226)
  • [MAC] I. G. Macdonald, Symmetric products of an algebraic curve, Topology 1 (1962), 319-343. MR 0151460 (27:1445)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 32L05, 14F05

Retrieve articles in all journals with MSC: 32L05, 14F05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1985-0792268-9
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society