Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Rotation invariant ideals in subalgebras of $ L\sp \infty$


Author: Pamela Gorkin
Journal: Proc. Amer. Math. Soc. 95 (1985), 32-36
MSC: Primary 46J10; Secondary 46J15
DOI: https://doi.org/10.1090/S0002-9939-1985-0796441-5
MathSciNet review: 796441
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, it is shown that the only (nontrivial) finitely generated rotation invariant ideals in $ {H^\infty }$ are $ {z^n}{H^\infty }$ for some positive integer $ n$. Using results about function algebras, it is shown that other rotation invariant ideals exist. Rotation invariant ideals of other subalgebras of $ {L^\infty }$ are also studied.


References [Enhancements On Off] (What's this?)

  • [1] S. Axler, Factorization of $ {L^\infty }$ functions, Ann. of Math. (2) 106 (1977), 567-572. MR 0461142 (57:1127)
  • [2] E. F. Collingwood, On sets of maximum indetermination of analytic functions, Math. Z. 67 (1957), 377-396. MR 0095951 (20:2449)
  • [3] T. W. Gamelin, Uniform algebras, Prentice-Hall, Englewood Cliffs, N.J., 1969. MR 0410387 (53:14137)
  • [4] K. Hoffman, Banach spaces of analytic functions, Prentice-Hall, Englewood Cliffs, N.J., 1962. MR 0133008 (24:A2844)
  • [5] S. C. Power, On ideals of nest subalgebras of $ {C^*}$-algebras, Proc. London Math. Soc. (3) 50 (1985), 314-332. MR 772716 (86d:47057)
  • [6] W. Rudin, Invariant means on $ {L^\infty }$, Studia Math. 44 (1972), 219-227. MR 0304975 (46:4105)
  • [7] D. E. Sarason, Algebras of functions on the unit circle, Bull. Amer. Math. Soc. 79 (1973), 286-300. MR 0324425 (48:2777)
  • [8] E. L. Stout, The theory of uniform algebras, Bogden & Quigley, New York, 1971. MR 0423083 (54:11066)
  • [9] T. Wolff, Two algebras of bounded functions, Duke Math. J. 49 (1982), 321-328. MR 659943 (84c:30051)
  • [10] -, Some theorems on vanishing mean oscillation, Thesis, Univ. of California at Berkeley, 1979.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46J10, 46J15

Retrieve articles in all journals with MSC: 46J10, 46J15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1985-0796441-5
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society