Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The Cartan matrix as an indicator of finite global dimension for Artinian rings


Authors: W. D. Burgess, K. R. Fuller, E. R. Voss and B. Zimmermann-Huisgen
Journal: Proc. Amer. Math. Soc. 95 (1985), 157-165
MSC: Primary 16A60; Secondary 16A35, 16A48
DOI: https://doi.org/10.1090/S0002-9939-1985-0801315-7
MathSciNet review: 801315
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A left serial ring has finite global dimension if and only if its Cartan matrix has determinant equal to 1.


References [Enhancements On Off] (What's this?)

  • [1] P. J. Davis, Circulant matrices, Wiley, New York, 1979. MR 543191 (81a:15003)
  • [2] S. Eilenberg, Algebras of cohomologically finite dimension, Comment. Math. Helv. 28 (1954), 310-319. MR 0065544 (16:442c)
  • [3] S. Eilenberg, M. Ikeda and T. Nakayama, On the dimension of modules and algebras. I, Nagoya Math. J. 8 (1955), 49-57. MR 0069157 (16:993a)
  • [4] K. R. Fuller, Generalized uniserial rings and their Kupisch series, Math. Z. 106 (1968), 248-260. MR 0232795 (38:1118)
  • [5] K. R. Fuller and J. Haack, Rings with quivers that are trees, Pacific J. Math. 76 (1978), 371-379. MR 0498683 (58:16764)
  • [6] R. Gordon and E. L. Green, Modules with cores and amalgamation of indecomposable modules, Mem. Amer. Math. Soc. 187 (1977). MR 0453815 (56:12068)
  • [7] W. H. Gustafson, Global dimension in serial rings, 1983 (typescript).
  • [8] J. P. Jans and T. Nakayama, On the dimension of modules and algebras. VII, Nagoya Math. J. 11 (1957), 67-76. MR 0086824 (19:250a)
  • [9] G. J. Janusz, Some left serial algebras of finite type, J. Algebra 23 (1972), 404-411. MR 0302703 (46:1847)
  • [10] H. Kupisch, Beiträge zur Theorie nichthalbeinfacher Ringe mit Minimalbedingung, J. Reine Angew. Math. 201 (1959), 100-112. MR 0104707 (21:3460)
  • [11] I. Murase, On the structure of generalized uniserial rings. I, II, III, Sci. Papers College Gen. Ed. Univ. Tokyo 13 (1963), 1-22; ibid. 13 (1963), 131-158; ibid. 14 (1964), 11-25. MR 0156875 (28:118)
  • [12] T. Nakayama, Some studies on regular representations, induced representations and modular representations, Ann. of Math. (2) 39 (1938), 361-369. MR 1503413
  • [13] G. V. Wilson, The Cartan map on categories of graded modules, J. Algebra 85 (1983), 390-398. MR 725091 (85h:16021)
  • [14] D. Zacharia, On the Cartan matrix of an Artin algebra of global dimension two, J. Algebra 82 (1983), 353-357. MR 704760 (84h:16020)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 16A60, 16A35, 16A48

Retrieve articles in all journals with MSC: 16A60, 16A35, 16A48


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1985-0801315-7
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society