Examples on harmonic measure and normal numbers

Author:
Jang-Mei Wu

Journal:
Proc. Amer. Math. Soc. **95** (1985), 211-216

MSC:
Primary 30C85; Secondary 31A15

MathSciNet review:
801325

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Suppose that is a bounded set in , , with positive capacity. Add to a disjoint set so that is closed, and let . Under what conditions on the added set do we have harmonic measure ? It turns out that besides the size of near , the location of relative to also plays an important role. Our example, based on normal numbers, stresses this fact.

**[1]**A. S. Besicovitch,*On the sum of digits of real numbers represented in the dyadic system*, Math. Ann.**110**(1935), no. 1, 321–330. MR**1512941**, 10.1007/BF01448030**[2]**J. L. Doob,*Classical potential theory and its probabilistic counterpart*, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 262, Springer-Verlag, New York, 1984. MR**731258****[3]**G. H. Hardy and E. M. Wright,*An introduction to the theory of numbers*, Oxford, at the Clarendon Press, 1954. 3rd ed. MR**0067125****[4]**David S. Jerison and Carlos E. Kenig,*Boundary behavior of harmonic functions in nontangentially accessible domains*, Adv. in Math.**46**(1982), no. 1, 80–147. MR**676988**, 10.1016/0001-8708(82)90055-X**[5]**S. Kaczmarz and H. Steinhaus,*Theorie der Orthogonalreihen*, PWN, Warsaw, 1935.**[6]**Robert Kaufman,*A further example on scales of Hausdorff functions*, J. London Math. Soc. (2)**8**(1974), 585–586. MR**0357721****[7]**Robert Kaufman and Jang Mei Wu,*Distortion of the boundary under conformal mapping*, Michigan Math. J.**29**(1982), no. 3, 267–280. MR**674280****[8]**Bernt Øksendal,*Brownian motion and sets of harmonic measure zero*, Pacific J. Math.**95**(1981), no. 1, 179–192. MR**631668****[9]**Jang-Mei Wu,*On singularity of harmonic measure in space*, Pacific J. Math.**121**(1986), no. 2, 485–496. MR**819202**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
30C85,
31A15

Retrieve articles in all journals with MSC: 30C85, 31A15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1985-0801325-X

Article copyright:
© Copyright 1985
American Mathematical Society