Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Compactness in $ L\sp 2$ and the Fourier transform


Author: Robert L. Pego
Journal: Proc. Amer. Math. Soc. 95 (1985), 252-254
MSC: Primary 42A38; Secondary 43A15
MathSciNet review: 801333
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The Riesz-Tamarkin compactness theorem in $ {L^p}({{\mathbf{R}}^n})$ employs notions of $ {L^p}$-equicontinuity and uniform $ {L^p}$-decay at $ \infty $. When $ 1 \leqslant p \leqslant 2$, we show that these notions correspond under the Fourier transform, and establish new necessary and sufficient criteria for compactness in $ {L^2}({{\mathbf{R}}^n})$.


References [Enhancements On Off] (What's this?)

  • [1] Robert A. Adams, Sobolev spaces, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975. Pure and Applied Mathematics, Vol. 65. MR 0450957
  • [2] Nelson Dunford and Jacob T. Schwartz, Linear operators. Part I, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1988. General theory; With the assistance of William G. Bade and Robert G. Bartle; Reprint of the 1958 original; A Wiley-Interscience Publication. MR 1009162
  • [3] Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton University Press, Princeton, N.J., 1971. Princeton Mathematical Series, No. 32. MR 0304972
  • [4] Kôsaku Yosida, Functional analysis, Second edition. Die Grundlehren der mathematischen Wissenschaften, Band 123, Springer-Verlag New York Inc., New York, 1968. MR 0239384
  • [5] H. J. Landau and H. O. Pollak, Prolate spheroidal wave functions, Fourier analysis and uncertainty. III. The dimension of the space of essentially time- and band-limited signals., Bell System Tech. J. 41 (1962), 1295–1336. MR 0147686
  • [6] Minoru Murata, A theorem of Liouville type for partial differential equations with constant coefficients, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 21 (1974), 395–404. MR 0372398

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 42A38, 43A15

Retrieve articles in all journals with MSC: 42A38, 43A15


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1985-0801333-9
Keywords: Compactness, Fourier transform, $ {L^p}$, $ {L^2}$, $ {L^p}$-equicontinuity
Article copyright: © Copyright 1985 American Mathematical Society