Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

The potential $ \mathcal{J}$-relation and amalgamation bases for finite semigroups


Authors: T. E. Hall and Mohan S. Putcha
Journal: Proc. Amer. Math. Soc. 95 (1985), 361-364
MSC: Primary 20M10
MathSciNet review: 806071
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ S$ be a finite semigroup, $ a,b \in S$. When does there exist a finite semigroup $ T$ containing $ S$ such that $ a\mathcal{J}b$ in $ T$? This problem was posed to the second named author by John Rhodes in 1974. We show here that if $ a$, $ b$ are regular, then such a semigroup $ T$ exists if and only if either $ a\mathcal{J}b$ in $ S$, or $ a \notin SbS$ and $ b \notin SaS$. We use this result to show that analgamation bases for the class of finite semigroups have linearly ordered $ \mathcal{J}$-classes.


References [Enhancements On Off] (What's this?)

  • [1] A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Math. Surveys, I and II, Amer. Math. Soc., Providence, R. I., 1961 and 1967.
  • [2] T. E. Hall, On the natural ordering of \cal𝐽-classes and of idempotents in a regular semigroup, Glasgow Math. J. 11 (1970), 167–168. MR 0269761
  • [3] T. E. Hall, Free products with amalgamation of inverse semigroups, J. Algebra 34 (1975), 375–385. MR 0382518
  • [4] T. E. Hall, Representation extension and amalgamation for semigroups, Quart. J. Math. Oxford Ser. (2) 29 (1978), no. 115, 309–334. MR 509697, 10.1093/qmath/29.3.309
  • [5] -, Inverse and regular semigroups and amalgamation: a brief survey, Symposium on Regular Semigroups, De Kalb, Illinois, 1979, pp. 49-79.
  • [6] J. M. Howie, An introduction to semigroup theory, Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York, 1976. L.M.S. Monographs, No. 7. MR 0466355
  • [7] John Rhodes, Some results on finite semigroups, J. Algebra 4 (1966), 471–504. MR 0201546

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 20M10

Retrieve articles in all journals with MSC: 20M10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1985-0806071-4
Article copyright: © Copyright 1985 American Mathematical Society