Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Orbits of higher-dimensional hereditarily indecomposable continua


Author: James T. Rogers
Journal: Proc. Amer. Math. Soc. 95 (1985), 483-486
MSC: Primary 54F20; Secondary 54F45, 54F50
DOI: https://doi.org/10.1090/S0002-9939-1985-0806092-1
MathSciNet review: 806092
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ X$ be a continuum. The following theorems are proved.

Theorem. If $ \dim X > 1$, then $ X$ contains uncountably many nonhomeomorphic continua.

Theorem. If $ \dim X > 1$ and $ X$ is hereditarily indecomposable, then $ X$ has uncountably many orbits under the action of its homeomorphism group.


References [Enhancements On Off] (What's this?)

  • [1] R. D. Anderson and G. Choquet, A plane continuum no two of whose nondegenerate subcontinua are homeomorphic: an application of inverse limits, Proc. Amer. Math. Soc. 10 (1959), 347-353. MR 0105073 (21:3819)
  • [2] R. H. Bing, Higher-dimensional hereditarily indecomposable continua, Trans. Amer. Math. Soc. 21 (1951), 267-273. MR 0043452 (13:265c)
  • [3] H. Cook, Treebkeness of hereditarily equivalent continua, Fund. Math. 68 (1970), 203-205. MR 0266164 (42:1072)
  • [4] F. Burton Jones, The aposyndetic decomposition of homogeneous continua, Topology Proc. 8 (1983), 51-54. MR 738469 (85g:54023)
  • [5] I. W. Lewis, Monotone maps of hereditarily indecomposable continua, Proc. Amer. Math. Soc. 75 (1979), 361-354. MR 532166 (82g:54051)
  • [6] T. Mćckowiak and E. D. Tymchatyn, Continuous mappings on continua. II, Dissertationes Math. 125 (1984), 1-62.
  • [7] S. Mazurkiewicz, Sur l'existencedaes continues inécomposables, Fund. Math. 25 (1935), 327-328.
  • [8] J. T. Rogers, Cell-like decompositions of homogeneous continua, Proc. Amer. Math. Soc. 87 (1983), 375-377. MR 681852 (84e:54040)
  • [9] -, Homogeneous, hereditarily indecomposable continua are tree-like, Houston J. Math. 8 (1982), 421-428. MR 684167 (84b:54072)
  • [10] R. L. Russo, Universal continua, Fund. Math. 105 (1979), 41-60. MR 558128 (81b:54031)
  • [11] Z. Waraskiewicz, Sur un problème de M. H. Hahn, Fund. Math. 18 (1932), 118-137.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54F20, 54F45, 54F50

Retrieve articles in all journals with MSC: 54F20, 54F45, 54F50


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1985-0806092-1
Keywords: Continuum, homogeneous, aposyndetic, hereditarily equivalent, hereditarily indecomposable, dimension
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society