Coefficients of odd univalent functions
Author:
Ke Hu
Journal:
Proc. Amer. Math. Soc. 96 (1986), 183-186
MSC:
Primary 30C50; Secondary 30C45
DOI:
https://doi.org/10.1090/S0002-9939-1986-0813835-0
MathSciNet review:
813835
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: Let


- [1] V. I. Milin, Estimate of the coefficients of odd univalent functions, Metric Questions of the Theory of Functions (G. D. Suvorov, ed.), "Naukova Dumka", Kiev, 1980, pp. 78-86. (Russian) MR 598843 (82i:30025)
- [2] I. M. Milin, Univalent functions and orthonormal systems, "Nauka", Moscow, 1971; English transl. in Transl. Math. Monographs, vol. 49, Amer. Math. Soc., Providence, R. I., 1977. MR 0369684 (51:5916)
- [3] V. I. Levin, Some remarks on the coefficients of schlicht functions, Proc. London Math. Soc. 39 (1935), 467-480.
- [4] J. E. Littlewood and R. E. A. C. Paley, A proof that an odd schlicht function has bounded coefficients, J. London Math. Soc. 7 (1932), 167-169.
- [5] Kung Sun, Contributions to the theory of schlicht functions. II: The coefficient problem, Sci. Sinica 4 (1955), 359-373.
- [6] L. de Branges, A proof of the Bieberbach conjecture, Steklov Mat. Inst., LOMI, preprint E-5-84, Leningrad, 1984, pp. 1-21.
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30C50, 30C45
Retrieve articles in all journals with MSC: 30C50, 30C45
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1986-0813835-0
Article copyright:
© Copyright 1986
American Mathematical Society