Multiple nontrivial solutions of resonant and nonresonant asymptotically linear problems

Author:
Shair Ahmad

Journal:
Proc. Amer. Math. Soc. **96** (1986), 405-409

MSC:
Primary 35J65; Secondary 35B32

MathSciNet review:
822429

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We give simple conditions under which a second order semilinear elliptic boundary value problem with the zero solution has at least two nonzero solutions. Our conditions involve the change in the spectrum of the linearization of the problem going from zero to infinity.

**[1]**S. Ahmad, A. C. Lazer, and J. L. Paul,*Elementary critical point theory and perturbations of elliptic boundary value problems at resonance*, Indiana Univ. Math. J.**25**(1976), no. 10, 933–944. MR**0427825****[2]**H. Amann and E. Zehnder,*Nontrivial solutions for a class of nonresonance problems and applications to nonlinear differential equations*, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)**7**(1980), no. 4, 539–603. MR**600524****[3]**Antonio Ambrosetti and Paul H. Rabinowitz,*Dual variational methods in critical point theory and applications*, J. Functional Analysis**14**(1973), 349–381. MR**0370183****[4]**Antonio Ambrosetti,*Differential equations with multiple solutions and nonlinear functional analysis*, Equadiff 82 (Würzburg, 1982) Lecture Notes in Math., vol. 1017, Springer, Berlin, 1983, pp. 10–37. MR**726565**, 10.1007/BFb0103232**[5]**P. Bartolo, V. Benci, and D. Fortunato,*Abstract critical point theorems and applications to some nonlinear problems with “strong” resonance at infinity*, Nonlinear Anal.**7**(1983), no. 9, 981–1012. MR**713209**, 10.1016/0362-546X(83)90115-3**[6]**Kung Ching Chang,*Solutions of asymptotically linear operator equations via Morse theory*, Comm. Pure Appl. Math.**34**(1981), no. 5, 693–712. MR**622618**, 10.1002/cpa.3160340503**[7]**Helmut Hofer,*A note on the topological degree at a critical point of mountainpass-type*, Proc. Amer. Math. Soc.**90**(1984), no. 2, 309–315. MR**727256**, 10.1090/S0002-9939-1984-0727256-0**[8]**A. C. Lazer and P. J. McKenna,*Critical point theory and boundary value problems with nonlinearities crossing multiple eigenvalues*, Comm. Partial Differential Equations**10**(1985), no. 2, 107–150. MR**777047**, 10.1080/03605308508820374**[9]**L. Nirenberg,*Topics in nonlinear functional analysis*, Courant Institute of Mathematical Sciences, New York University, New York, 1974. With a chapter by E. Zehnder; Notes by R. A. Artino; Lecture Notes, 1973–1974. MR**0488102****[10]**Paul H. Rabinowitz,*Some minimax theorems and applications to nonlinear partial differential equations*, Nonlinear analysis (collection of papers in honor of Erich H. Rothe), Academic Press, New York, 1978, pp. 161–177. MR**0501092****[11]**Paul H. Rabinowitz,*The mountain pass theorem: theme and variations*, Differential equations (S ao Paulo, 1981) Lecture Notes in Math., vol. 957, Springer, Berlin-New York, 1982, pp. 237–271. MR**679149****[12]**David H. Sattinger,*Topics in stability and bifurcation theory*, Lecture Notes in Mathematics, Vol. 309, Springer-Verlag, Berlin-New York, 1973. MR**0463624**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
35J65,
35B32

Retrieve articles in all journals with MSC: 35J65, 35B32

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1986-0822429-2

Keywords:
Critical point of mountain-pass type,
Leray-Schauder degree,
eigenvalues,
nondegenerate critical point,
Landesman-Lazer condition

Article copyright:
© Copyright 1986
American Mathematical Society