Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

A singular integral


Author: Javad Namazi
Journal: Proc. Amer. Math. Soc. 96 (1986), 421-424
MSC: Primary 42B20
DOI: https://doi.org/10.1090/S0002-9939-1986-0822432-2
MathSciNet review: 822432
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we show that if $ K(x) = \Omega (x)/{\left\vert x \right\vert^n}$ is a Calderón-Zygmund kernel, where $ \Omega \in {L^q}({S^{n - 1}})$ for some $ 1 < q \leq \infty $, and $ b$ is a radial bounded function, then $ b(x)K(x)$ is the kernel of a convolution operator which is bounded on $ {L^p}({R^n})$ for $ 1 < p < \infty $ and $ n \geq 2$.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 42B20

Retrieve articles in all journals with MSC: 42B20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1986-0822432-2
Keywords: Calderón-Zygmund kernels
Article copyright: © Copyright 1986 American Mathematical Society