Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Small commutators and invariant subspaces

Author: Hua Xin Lin
Journal: Proc. Amer. Math. Soc. 96 (1986), 443-446
MSC: Primary 47A15; Secondary 47B47
MathSciNet review: 822436
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ A$ be an operator on a Banach space, and let $ T$ be a nonzero compact (polynomial compact) operator. We prove that if $ TA - AT$ is "small", then $ A$ has a nontrivial (hyper)invariant subspace.

References [Enhancements On Off] (What's this?)

  • [1] V. I. Lomonosov, Invariant subspaces for the family of operators which commutes with a completely continuous operator, Functional Anal. Appl. 7 (1973), 213-214. MR 0420305 (54:8319)
  • [2] J. Daughtry, An invariant subspace theorem, Proc. Amer. Math. Soc. 49 (1975), 267-268. MR 0365176 (51:1429)
  • [3] H. W. Kim, Carl Pearcy and A. L. Shields, Rank one commutator and hyperinvariant subspaces, Michigan Math. J. 22 (1976), 193-194. MR 0390803 (52:11626)
  • [4] P. R. Halmos, A Hilbert space problem book, Problem 184, Van Nostrand-Reinhold, Princeton, N. J., 1967. MR 0208368 (34:8178)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47A15, 47B47

Retrieve articles in all journals with MSC: 47A15, 47B47

Additional Information

Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society