A Gaussian measure for certain continued fractions

Author:
Sofia Kalpazidou

Journal:
Proc. Amer. Math. Soc. **96** (1986), 629-635

MSC:
Primary 11K50; Secondary 28D99

MathSciNet review:
826493

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We solve a variant of Gauss' problem for grotesque continued fraction using the approach of dependence with complete connections.

**[1]**Şerban Grigorescu and Marius Iosifescu,*Dependenţă cu legături complete şi aplicaţii*, Editura Ştiinţifică si Enciclopedicǎ, Bucharest, 1982 (Romanian). With an English summary. MR**692365****[2]**M. Iosifescu and R. Theodorescu,*Random processes and learning*, Springer-Verlag, New York, 1969. Die Grundlehren der mathematischen Wissenschaften, Band 150. MR**0293704****[3]**Mark Kac,*Statistical independence in probability, analysis and number theory.*, The Carus Mathematical Monographs, No. 12, Published by the Mathematical Association of America. Distributed by John Wiley and Sons, Inc., New York, 1959. MR**0110114****[4]**Sofia Kalpazidou,*Some asymptotic results on digits of the nearest integer continued fraction*, J. Number Theory**22**(1986), no. 3, 271–279. MR**831872**, 10.1016/0022-314X(86)90011-9**[5]**Sofia Kalpazidou,*On a random system with complete connections associated with the continued fraction to the nearer integer expansion*, Rev. Roumaine Math. Pures Appl.**30**(1985), no. 7, 527–537. MR**826234****[6]**M. Frank Norman,*Markov processes and learning models*, Academic Press, New York-London, 1972. Mathematics in Science and Engineering, Vol. 84. MR**0423546****[7]**G. J. Rieger,*Ein Heilbronn-Satz für Kettenbrüche mit ungeraden Teilnennern*, Math. Nachr.**101**(1981), 295–307 (German). MR**638347**, 10.1002/mana.19811010126**[8]**-,*On the metrical theory of continued fractions with odd partial quotients*, in print.**[9]**F. Schweiger,*Continued fractions with odd and even partial quotients*, Arbeitsbericht of Math. Instit. der Univ. Salzburg**4**(1982), 59-70.**[10]**Eduard Wirsing,*On the theorem of Gauss-Kusmin-Lévy and a Frobenius-type theorem for function spaces*, Acta Arith.**24**(1973/74), 507–528. Collection of articles dedicated to Carl Ludwig Siegel on the occasion of his seventy-fifth birthday, V. MR**0337868**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
11K50,
28D99

Retrieve articles in all journals with MSC: 11K50, 28D99

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1986-0826493-6

Article copyright:
© Copyright 1986
American Mathematical Society