Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

An isomorphism for the Grothendieck ring of a Hopf algebra order


Authors: Anna-Lise Jensen and Richard G. Larson
Journal: Proc. Amer. Math. Soc. 97 (1986), 197-200
MSC: Primary 16A54; Secondary 16A24, 18F25, 19A31
DOI: https://doi.org/10.1090/S0002-9939-1986-0835864-3
MathSciNet review: 835864
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: If $ G$ is a finite abelian group, $ R$ is a principal ideal domain with field of quotients an algebraic number field $ K$ which splits $ G$, and if $ A$ is a Hopf algebra order in KG, then the Grothendieck ring of the category of finitely generated $ A$-modules is isomorphic to the Grothendieck ring of the category of finitely generated RG-modules.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 16A54, 16A24, 18F25, 19A31

Retrieve articles in all journals with MSC: 16A54, 16A24, 18F25, 19A31


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1986-0835864-3
Keywords: Grothendieck group, Hopf algebra order, representation
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society