Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Random fixed point theorems for measurable multifunctions in Banach spaces


Author: Nikolaos S. Papageorgiou
Journal: Proc. Amer. Math. Soc. 97 (1986), 507-514
MSC: Primary 60H25; Secondary 47H10
DOI: https://doi.org/10.1090/S0002-9939-1986-0840638-3
MathSciNet review: 840638
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we prove several random fixed point theorems for measurable closed and nonclosed valued multifunctions satisfying general continuity conditions. Our work extends and sharpens earlier results by Engl, Itoh and Reich.


References [Enhancements On Off] (What's this?)

  • [1] J. P. Aubin, Mathematical methods in game and economic theory, North-Holland, Amsterdam, 1979. MR 556865 (83a:90005)
  • [2] A. T. Bharucha-Reid, Random integral equations, Academic Press, New York, 1972. MR 0443086 (56:1459)
  • [3] -, Fixed point theorems in probabilistic analysis, Bull. Amer. Math. Soc. 82 (1976), 641-645. MR 0413273 (54:1390)
  • [4] C. Castaing and M. Valadier, Convex analysis and measurable multifunctions, Lecture Notes in Math., Vol. 580, Springer-Verlag, Berlin, 1977. MR 0467310 (57:7169)
  • [5] R. Cornwall, Conditions for the graph and the integral of a correspondence to be open, J. Math. Anal. Appl. 39 (1972), 771-792. MR 0313473 (47:2027)
  • [6] F. DeBlasi and G. Pianigiani, Remarks on Hausdorff continuous multifunctions and selections, Comm. Math. Univ. Carolin. 24 (1983), 553-561. MR 730150 (86a:54022)
  • [7] J. Diestel and J. Uhl, Vector measures, Math. Surveys, Vol. 15, Amer. Math. Soc., Providence, R.I., 1977. MR 0453964 (56:12216)
  • [8] J. Dugundji, Topology, Allyn and Bacon, Boston, Mass., 1966. MR 0193606 (33:1824)
  • [9] N. Dunford and J. T. Schwartz, Linear operators. I, Wiley Interscience, New York, 1958.
  • [10] H. Engl, Random fixed point theorems for multivalued mappings, Pacific J. Math. 76 (1976), 351-360. MR 0500323 (58:17986)
  • [11] A. Fryszkowski, Caratheodory type selectors of set valued maps of two variables, Bull. Acad. Polon. Sci. Sér. Sci. Math. 25 (1977), 41-46. MR 0464144 (57:4079)
  • [12] F. Hiai and H. Umegaki, Integrals, conditional expectations and martingales of multivalued functions, J. Multivariate Anal. 7 (1977), 149-182. MR 0507504 (58:22463)
  • [13] C. Himmelberg, Measurable relations, Fund. Math. 87 (1975), 53-72. MR 0367142 (51:3384)
  • [14] -, Fixed points of compact multifunctions, J. Math. Anal. Appl. 38 (1972), 205-207. MR 0303368 (46:2505)
  • [15] S. Itoh, Random fixed point theorems with an application to random differential equations in Banach spaces, J. Math. Anal. Appl. 67 (1979), 261-273. MR 528687 (80f:60059)
  • [16] K. Kuratowski, Topology. I, Academic Press, New York, 1966. MR 0217751 (36:840)
  • [17] -, Topology. II, Academic Press, New York, 1966.
  • [18] Ky Fan, Extensions of two fixed point theorems of F. Browder, Math. Z. 112 (1969), 234-240. MR 0251603 (40:4830)
  • [19] M. Lassonde, On the use of K.K.M. multifunctions in fixed point theory and related topics, J. Math. Anal. Appl. 97 (1983), 151-201. MR 721236 (84k:47049)
  • [20] E. Michael, Continuous selections. I, Ann. of Math. 63 (1965), 361-382. MR 0077107 (17:990e)
  • [21] S. Reich, Approximate selections, best approximations, fixed points and invariant sets, J. Math. Anal. Appl. 62 (1978), 104-112. MR 0514991 (58:24180)
  • [22] R. T. Rockafellar, Measurable dependence of convex sets and functions on parameters, J. Math. Anal. Appl. 28 (1969), 4-25. MR 0247019 (40:288)
  • [23] M. Saint-Beuve, On the extension of Von Neumann-Aumann's theorem, J. Funct. Anal. 17 (1974), 112-129. MR 0374364 (51:10564)
  • [24] N. S. Papageorgiou, Representation of set valued operators, Trans. Amer. Math. Soc. 292 (1985), 557-572. MR 808737 (87c:47085)
  • [25] S. B. Nalder, Multivalued contraction mappings, Pacific J. Math. 30 (1969), 476-488.
  • [26] A. Ionescu-Tulcea and C. Ionescu-Tulcea, Topics in the theory of lifting, Springer-Verlag, Berlin, 1969. MR 0276438 (43:2185)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 60H25, 47H10

Retrieve articles in all journals with MSC: 60H25, 47H10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1986-0840638-3
Keywords: Measurable multifunction, stochastic domain, upper hemicontinuous, measurable selector, Hausdorff metric, lower semicontinuous
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society