Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the coefficients of $ p$-valent functions which are polynomials of univalent functions


Author: Pavel G. Todorov
Journal: Proc. Amer. Math. Soc. 97 (1986), 605-608
MSC: Primary 30C50; Secondary 30C30
DOI: https://doi.org/10.1090/S0002-9939-1986-0845973-0
MathSciNet review: 845973
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give explicit representations of the coefficients of $ p$-valent functions which are polynomials of univalent functions of the class $ S$. With their help we prove the Goodman conjecture in the special case that $ f(z) = {[\varphi (z)]^p}$, $ \varphi (z)$ in $ S$. We also obtain sharp upper bounds for the coefficients of the considered $ p$-valent functions in terms of the coefficients of the two component functions.


References [Enhancements On Off] (What's this?)

  • [1] A. W. Goodman, On some determinants related to $ p$-valent functions, Trans. Amer. Math. Soc. 63 (1948), 175-192. MR 0023910 (9:421g)
  • [2] A. Lyzzaik and D. Styer, Goodman's conjecture and the coefficients of univalent functions, Proc. Amer. Math. Soc. 69 (1978), 111-114. MR 0460619 (57:612)
  • [3] P. G. Todorov, New explicit formulas for the coefficients of $ p$-symmetric functions, Proc. Amer. Math. Soc. 77 (1979), 81-86. MR 539635 (81g:30021)
  • [4] -, Explicit formulas for the coefficients of Faber polynomials with respect to univalent Junctions of the class $ \Sigma $, Proc. Amer. Math. Soc. 82 (1981), 431-438. MR 612735 (82f:30016)
  • [5] L. de Branges, A proof of the Bieberbach conjecture, Acta. Math. 154 (1985), 137-152. MR 772434 (86h:30026)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30C50, 30C30

Retrieve articles in all journals with MSC: 30C50, 30C30


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1986-0845973-0
Keywords: $ p$-valent functions, univalent functions, the Goodman conjecture
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society