On rational approximation

Author:
Joan Verdera

Journal:
Proc. Amer. Math. Soc. **97** (1986), 621-625

MSC:
Primary 30E10

MathSciNet review:
845976

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be compact and let be a compactly supported function in , , such that vanishes on up to order . We prove that can be approximated in by a sequence of functions which are holomorphic in neighborhoods of .

**[1]**Joaquim Bruna and Josep Ma. Burgués,*Holomorphic approximation in 𝐶^{𝑚}-norms on totally real compact sets in 𝐶ⁿ*, Math. Ann.**269**(1984), no. 1, 103–117. MR**756779**, 10.1007/BF01455999**[2]**Theodore W. Gamelin,*Uniform algebras*, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1969. MR**0410387****[3]**Nguyen Xuan Uy,*Removable sets of analytic functions satisfying a Lipschitz condition*, Ark. Mat.**17**(1979), no. 1, 19–27. MR**543500**, 10.1007/BF02385454**[4]**A. G. O’Farrell,*Rational approximation in Lipschitz norms. I*, Proc. Roy. Irish Acad. Sect. A**77**(1977), no. 10, 113–115. MR**0507905****[5]**A. G. O’Farrell,*Rational approximation in Lipschitz norms. II*, Proc. Roy. Irish Acad. Sect. A**79**(1979), no. 11, 103–114. MR**549734****[6]**Anthony G. O’Farrell,*Hausdorff content and rational approximation in fractional Lipschitz norms*, Trans. Amer. Math. Soc.**228**(1977), 187–206. MR**0432887**, 10.1090/S0002-9947-1977-0432887-2**[7]**A. G. O’Farrell,*Qualitative rational approximation on plane compacta*, Banach spaces, harmonic analysis, and probability theory (Storrs, Conn., 1980/1981) Lecture Notes in Math., vol. 995, Springer, Berlin, 1983, pp. 103–122. MR**717230**, 10.1007/BFb0061890

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
30E10

Retrieve articles in all journals with MSC: 30E10

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9939-1986-0845976-6

Article copyright:
© Copyright 1986
American Mathematical Society