Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Engulfing and finitely generated groups


Author: Richard Skora
Journal: Proc. Amer. Math. Soc. 97 (1986), 734-736
MSC: Primary 57N10; Secondary 57M05, 57N30
DOI: https://doi.org/10.1090/S0002-9939-1986-0845998-5
MathSciNet review: 845998
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ M$ be a simply connected $ 3$-manifold and $ K$ a piecewiselinear, simple loop in the interior of $ M$. It is shown that there is a piecewiselinear, homotopy $ 3$-ball $ \mathcal{B} \subset {\text{ }}\mathop M\limits^ \circ $, such that $ K \subset {\text{ }}\mathop \mathcal{B}\limits^ \circ $ if and only if $ {\pi _1}(M\backslash K)$ is finitely generated.


References [Enhancements On Off] (What's this?)

  • [1] R. H. Bing, Necessary and sufficient conditions that a $ 3$-manifold be $ {S^3}$, Ann. of Math. 68 (1958), 17-37. MR 0095471 (20:1973)
  • [2] Ralph H. Fox and Emil Artin, Some wild cells and spheres in three-dimensional space, Ann. of Math. 49 (1948), 979-990. MR 0027512 (10:317g)
  • [3] G. P. Scott, Compact submanifolds of $ 3$-manifolds, J. London Math. Soc. (2) 7 (1973), 246-250. MR 0326737 (48:5080)
  • [4] A. Shapiro and J. H. C. Whitehead, A proof and extension of Dehn's Lemma, Bull. Amer. Math. Soc. 64 (1958), 174-178. MR 0103474 (21:2242)
  • [5] R. Skora, Cantor sets in $ {S^3}$ with simply connected complements, Topology Appl. (1986) (to appear). MR 872489 (87m:57009)
  • [6] J. H. C. Whitehead, A certain open manifold whose group is unity, Quart. J. Math. (Oxford) 6 (1935), 268-279.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 57N10, 57M05, 57N30

Retrieve articles in all journals with MSC: 57N10, 57M05, 57N30


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1986-0845998-5
Keywords: $ 3$-manifold, engulf, finitely generated
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society