Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A best constant and the Gaussian curvature


Author: Chong Wei Hong
Journal: Proc. Amer. Math. Soc. 97 (1986), 737-747
MSC: Primary 58G30; Secondary 35B45, 53C20, 58E99
DOI: https://doi.org/10.1090/S0002-9939-1986-0845999-7
MathSciNet review: 845999
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For axisymmetric $ f \in {C^\infty }({S^2})$ we find conditions to make $ f$ the scalar curvature of a metric pointwise conformal to the standard metric of $ {S^2}$. Closely related to these results, we prove that in the inequality (Moser [8])

$\displaystyle \int_{{S^2}} {{e^u} \leq C{e^{\left\Vert {\nabla u} \right\Vert _... ...16\pi \quad }}\forall u \in H_1^2({S^2})} {\text{ with }}\int_{{S^2}} {u = 0} ,$

, the best constant $ C = {\text{Vol(}}{{\text{S}}^2}{\text{)}}$.

References [Enhancements On Off] (What's this?)

  • [1] S. T. Yau, Survey on partial differential equations in differential geometry, Seminar on Differential Geometry (S. T. Yau ed.), Princeton Univ. Press, Princeton, N. J., 1982, pp. 3-71. MR 645729 (83i:53003)
  • [2] Th. Aubin, Nonlinear analysis on manifolds, Monge-Ampere Equations, Springer-Verlag, New York, 1982. MR 681859 (85j:58002)
  • [3] J. Kazdan, Gaussian and scalar curvature, an update, Seminar on Differential Geometry (S. T. Yau, ed.), Princeton Univ. Press, Princeton, N. J., 1982, pp. 185-191.
  • [4] J. Moser, On a nonlinear problem in differential geometry, Dynamical Systems (M. Peixoto ed.), Academic Press, New York, 1973. MR 0339258 (49:4018)
  • [5] J. Kazdan and F. Warner, Existence and conformal deformation of metrics with prescribed Gaussian and scalar curvature, Ann. of Math. (2) 101 (1975), 317-331. MR 0375153 (51:11349)
  • [6] Th. Aubin, Meilleures constantes dans le théorème d'inclusion de Sobolev, J. Funct. Anal. 32 (1979), 148-174. MR 534672 (80i:58043)
  • [7] J. Kazdan and F. Warner, Curvature functions for compact $ 2$-manifolds, Ann. of Math. (2) 99 (1974), 14-47. MR 0343205 (49:7949)
  • [8] J. Moser, A sharp form of an inequality of $ N$. Trudinger, Indiana Univ. Math. J. 20 (1971), 1077-1092. MR 0301504 (46:662)
  • [9] H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), 437-477. MR 709644 (84h:35059)
  • [10] E. Kamke, Differentialgleichungen, Lösungsmethoden und Lösungen. I, Gewöhnliche Differentialgleichungen, Akademische Verlagsgesellschaft, Leipzig, 1967.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 58G30, 35B45, 53C20, 58E99

Retrieve articles in all journals with MSC: 58G30, 35B45, 53C20, 58E99


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1986-0845999-7
Keywords: Gaussian curvature, semilinear elliptic equation
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society