Rings with a bounded number of generators for right ideals

Author:
William D. Blair

Journal:
Proc. Amer. Math. Soc. **98** (1986), 1-6

MSC:
Primary 16A33; Secondary 13E05, 16A38

DOI:
https://doi.org/10.1090/S0002-9939-1986-0848862-0

MathSciNet review:
848862

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let the ring be a finitely generated module over a subring of its center. Then it will be shown that has the property that every right ideal can be generated by a bounded number of elements if and only if has the property that every ideal can be generated by a bounded number of elements. As a corollary we show that a two-sided Noetherian affine ring satisfying a polynomial identity has the property that every right ideal can be generated by a bounded number of elements if and only if every left ideal can be generated by a bounded number of elements.

**[1]**W. D. Blair,*Right Noetherian rings integral over their centers*, J. Algebra**27**(1973), 187-198. MR**0325679 (48:4026)****[2]**G. Cauchon,*Anneaux semi-premiers, noethériens, à identitiés polynomiales*, Bull. Soc. Math. France**104**(1976), 99-111. MR**0407076 (53:10859)****[3]**I. S. Cohen,*Commutative rings with restricted minimum condition*, Duke Math. J.**17**(1950), 27-42. MR**0033276 (11:413g)****[4]**D. Eisenbud,*Subrings of Artinian and Noetherian rings*, Math. Ann.**185**(1970), 247-249. MR**0262275 (41:6885)****[5]**A. V. Jategaonkar,*A counterexample in ring theory and homological algebra*, J. Algebra**12**(1969), 418-440. MR**0240131 (39:1485)****[6]**D. Mollier,*Descente de la propriété noethérienne*, Bull. Sci. Math.**94**(1970), 25-31. MR**0269638 (42:4533)****[7]**J. C. Robson and L. W. Small,*Liberal extensions*, Proc. London Math. Soc. (3)**42**(1981), 87-103. MR**602124 (82c:16025)****[8]**L. H. Rowen,*Polynomial identities in ring theory*, Academic Press, New York, 1980. MR**576061 (82a:16021)****[9]**J. D. Sally,*Some results on multiplicity with applications to bounded and two dimensional prime bounded rings*, J. Algebra**35**(1975), 224-234. MR**0379484 (52:389)****[10]**J. J. Sarraillé,*Module finiteness of low-dimensional PI rings*, Pacific J. Math.**102**(1982), 189-208. MR**682051 (84f:16024)****[11]**J. T. Stafford,*Rings with a bounded number of generators for right ideals*, Quart. J. Math. Oxford Ser. (2)**34**(1983), 107-114. MR**688428 (84f:16020)****[12]**R. G. Swan,*The number of generators of a module*, Math. Z.**102**(1967), 318-322. MR**0218347 (36:1434)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
16A33,
13E05,
16A38

Retrieve articles in all journals with MSC: 16A33, 13E05, 16A38

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1986-0848862-0

Article copyright:
© Copyright 1986
American Mathematical Society