Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Rings with a bounded number of generators for right ideals


Author: William D. Blair
Journal: Proc. Amer. Math. Soc. 98 (1986), 1-6
MSC: Primary 16A33; Secondary 13E05, 16A38
DOI: https://doi.org/10.1090/S0002-9939-1986-0848862-0
MathSciNet review: 848862
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let the ring $ S$ be a finitely generated module over a subring $ R$ of its center. Then it will be shown that $ S$ has the property that every right ideal can be generated by a bounded number of elements if and only if $ R$ has the property that every ideal can be generated by a bounded number of elements. As a corollary we show that a two-sided Noetherian affine ring satisfying a polynomial identity has the property that every right ideal can be generated by a bounded number of elements if and only if every left ideal can be generated by a bounded number of elements.


References [Enhancements On Off] (What's this?)

  • [1] W. D. Blair, Right Noetherian rings integral over their centers, J. Algebra 27 (1973), 187-198. MR 0325679 (48:4026)
  • [2] G. Cauchon, Anneaux semi-premiers, noethériens, à identitiés polynomiales, Bull. Soc. Math. France 104 (1976), 99-111. MR 0407076 (53:10859)
  • [3] I. S. Cohen, Commutative rings with restricted minimum condition, Duke Math. J. 17 (1950), 27-42. MR 0033276 (11:413g)
  • [4] D. Eisenbud, Subrings of Artinian and Noetherian rings, Math. Ann. 185 (1970), 247-249. MR 0262275 (41:6885)
  • [5] A. V. Jategaonkar, A counterexample in ring theory and homological algebra, J. Algebra 12 (1969), 418-440. MR 0240131 (39:1485)
  • [6] D. Mollier, Descente de la propriété noethérienne, Bull. Sci. Math. 94 (1970), 25-31. MR 0269638 (42:4533)
  • [7] J. C. Robson and L. W. Small, Liberal extensions, Proc. London Math. Soc. (3) 42 (1981), 87-103. MR 602124 (82c:16025)
  • [8] L. H. Rowen, Polynomial identities in ring theory, Academic Press, New York, 1980. MR 576061 (82a:16021)
  • [9] J. D. Sally, Some results on multiplicity with applications to bounded and two dimensional prime bounded rings, J. Algebra 35 (1975), 224-234. MR 0379484 (52:389)
  • [10] J. J. Sarraillé, Module finiteness of low-dimensional PI rings, Pacific J. Math. 102 (1982), 189-208. MR 682051 (84f:16024)
  • [11] J. T. Stafford, Rings with a bounded number of generators for right ideals, Quart. J. Math. Oxford Ser. (2) 34 (1983), 107-114. MR 688428 (84f:16020)
  • [12] R. G. Swan, The number of generators of a module, Math. Z. 102 (1967), 318-322. MR 0218347 (36:1434)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 16A33, 13E05, 16A38

Retrieve articles in all journals with MSC: 16A33, 13E05, 16A38


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1986-0848862-0
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society