Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Extending valuations to finite-dimensional division algebras


Author: Adrian R. Wadsworth
Journal: Proc. Amer. Math. Soc. 98 (1986), 20-22
MSC: Primary 16A39; Secondary 12E15
DOI: https://doi.org/10.1090/S0002-9939-1986-0848866-8
MathSciNet review: 848866
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ D$ be a division algebra finite dimensional over its center $ F$. It is shown that a (Krull) valuation $ v$ on $ F$ extends to a valuation on $ D$ iff $ \upsilon $ extends uniquely to each commutative field $ K$ with $ F \subseteq K \subseteq D$.


References [Enhancements On Off] (What's this?)

  • [A] S. A. Amitsur, On central division algebras, Israel J. Math. 12 (1972), 408-422. MR 0318216 (47:6763)
  • [B] N. Bourbaki, Algèbre commutative, Chapitre 6: Valuations, Hermann, Paris, 1964. MR 0194450 (33:2660)
  • [C] P. M. Cohn, On extending valuations in division algebras, Studia Sci. Math. Hungar. 16 (1981), 65-70. MR 703642 (84f:16025)
  • [D] L. E. Dickson, Algebras and their arithmetics, Dover, New York, 1923. MR 0111764 (22:2625)
  • [DK] P. Draxl and M. Kneser, Editors, $ S{K_1}$ von Schiefkörpern, Lecture Notes in Math., vol. 778, Springer-Verlag, Berlin, 1980. MR 591206 (82b:16014)
  • [JW] B. Jacob and A. Wadsworth, A new construction of noncrossed product algebras, Trans. Amer. Math. Soc. 293 (1986), 693-721. MR 816320 (87g:16027)
  • [P] V. P. Platonov, The Tannaka-Artin problem and reduced $ K$-theory, Izv. Akad. Nauk SSSR Ser. Mat. 40 (1976), 227-261; English transl., Math. USSR Izv. 10 (1976), 211-243. MR 0407082 (53:10865)
  • [R] I. Reiner, Maximal orders, Academic Press, London, 1975. MR 1972204 (2004c:16026)
  • [S] O. F. G. Schilling, The theory of valuations, Math. Surveys, no. 4, Amer. Math. Soc., Providence, R.I., 1950. MR 0043776 (13:315b)
  • [T] J.-P. Tignol, Cyclic and elementary abelian subfields of Malcev-Neumann division algebras, preprint, 1985. MR 857567 (87m:16041)
  • [W] J. H. M. Wedderburn, On division algebras, Trans. Amer. Math. Soc. 22 (1921), 129-135. MR 1501164

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 16A39, 12E15

Retrieve articles in all journals with MSC: 16A39, 12E15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1986-0848866-8
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society