Genus group of finite Galois extensions
Author:
Teruo Takeuchi
Journal:
Proc. Amer. Math. Soc. 98 (1986), 211-214
MSC:
Primary 11R37
DOI:
https://doi.org/10.1090/S0002-9939-1986-0854020-6
MathSciNet review:
854020
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: Let be a Galois extension of finite degree, and let
denote the maximal abelian extension over
contained in the Hilbert class field of
. We give formulas about the group structure of
and the genus group of
, which refine the ordinary genus formula.
- [1] Y. Furuta, The genus field and genus number in algebraic number fields, Nagoya Math. J. 29 (1967), 281-285. MR 0209260 (35:162)
- [2] T. Kubota, Galois group of the maximal abelian extension over an algebraic number field, Nagoya Math. J. 12 (1957), 177-189. MR 0098077 (20:4539)
- [3]
H. Miki, On the maximal abelian
-extension of a finite algebraic number field with given ramification, Nagoya Math. J. 70 (1978), 183-202. MR 0480420 (58:583)
- [4] I. R. Šfarevič, Extensions with given points of ramification, Inst. Hautes Études Sci. Publ. Math. 18 (1963), 71-95; Amer. Math. Soc. Transl. 59 (1966), 128-149.
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 11R37
Retrieve articles in all journals with MSC: 11R37
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1986-0854020-6
Article copyright:
© Copyright 1986
American Mathematical Society