Every exactly -to- function on the reals has an infinite set of discontinuities

Author:
Jo Heath

Journal:
Proc. Amer. Math. Soc. **98** (1986), 369-373

MSC:
Primary 54C10; Secondary 26A15

MathSciNet review:
854049

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It has long been known that the set of discontinuities of a -to- function on either the closed or the open interval must be nonempty; this paper proves that the set must be infinite.

**[1]**Karol Borsuk and R. Molski,*On a class of continuous mappings*, Fund. Math.**45**(1957), 84–98. MR**0102063****[2]**Paul Civin,*Two-to-one mappings of manifolds*, Duke Math. J.**10**(1943), 49–57. MR**0008697****[3]**Paul W. Gilbert,*𝑛-to-one mappings of linear graphs*, Duke Math. J.**9**(1942), 475–486. MR**0007106****[4]**O. G. Harrold Jr.,*The non-existence of a certain type of continuous transformation*, Duke Math. J.**5**(1939), 789–793. MR**0001358****[5]**O. G. Harrold Jr.,*Exactly (𝑘,1) transformations on connected linear graphs*, Amer. J. Math.**62**(1940), 823–834. MR**0002554****[6]**Venable Martin and J. H. Roberts,*Two-to-one transformations on 2-manifolds*, Trans. Amer. Math. Soc.**49**(1941), 1–17. MR**0004129**, 10.1090/S0002-9947-1941-0004129-9**[7]**J. Mioduszewski,*On two-to-one continuous functions*, Rozprawy Mat.**24**(1961), 43. MR**0145490****[8]**Sam B. Nadler Jr. and L. E. Ward Jr.,*Concerning exactly (𝑛,1) images of continua*, Proc. Amer. Math. Soc.**87**(1983), no. 2, 351–354. MR**681847**, 10.1090/S0002-9939-1983-0681847-3**[9]**J. H. Roberts,*Two-to-one transformations*, Duke Math. J.**6**(1940), 256–262. MR**0001923**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
54C10,
26A15

Retrieve articles in all journals with MSC: 54C10, 26A15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1986-0854049-8

Article copyright:
© Copyright 1986
American Mathematical Society