Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Every exactly $ 2$-to-$ 1$ function on the reals has an infinite set of discontinuities


Author: Jo Heath
Journal: Proc. Amer. Math. Soc. 98 (1986), 369-373
MSC: Primary 54C10; Secondary 26A15
DOI: https://doi.org/10.1090/S0002-9939-1986-0854049-8
MathSciNet review: 854049
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It has long been known that the set of discontinuities of a $ 2$-to-$ 1$ function on either the closed or the open interval must be nonempty; this paper proves that the set must be infinite.


References [Enhancements On Off] (What's this?)

  • [1] K. Borsuk and R. Molski, On a class of continuous maps, Fund. Math. 45 (1958), 84-98. MR 0102063 (21:858)
  • [2] P. Civin, Two-to-one mappings of manifolds, Duke Math. J. 10 (1943), 49-57. MR 0008697 (5:47e)
  • [3] P. Gilbert, $ n$-to-one mappings of linear graphs, Duke Math. J. 9 (1942), 475-486. MR 0007106 (4:88b)
  • [4] O. G. Harrold, The non-existence of a certain type of continuous transformation, Duke Math. J. 5 (1939), 789-793. MR 0001358 (1:223c)
  • [5] -, Exactly $ (k,1)$) transformations on connected linear graph, Amer. J. Math. 62 (1940), 823-834. MR 0002554 (2:75c)
  • [6] V. Martin and J. H. Roberts, Two-to-one transformations on $ 2$-manifolds, Trans. Amer. Math. Soc. 49 (1941), 1-17. MR 0004129 (2:324d)
  • [7] J. Mioduszewski, On two-to-one continuous functions, Dissertationes Math. (Rozprawy Mat.) 24 (1961), 42. MR 0145490 (26:3021)
  • [8] S. B. Nadler, Jr., and L. W. Ward, Jr.,Concerning exactly $ (n,1)$) images of continua, Proc. Amer. Math. Soc. 87 (1983), 351-354. MR 681847 (84c:54059)
  • [9] J. H. Roberts, Two-to-one transformation,. Duke Math. J. 6 (1940), 256-262. MR 0001923 (1:319d)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54C10, 26A15

Retrieve articles in all journals with MSC: 54C10, 26A15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1986-0854049-8
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society