Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The analytic Radon-Nikodým property in Lebesgue Bochner function spaces


Author: Patrick N. Dowling
Journal: Proc. Amer. Math. Soc. 99 (1987), 119-122
MSC: Primary 46E40; Secondary 46B22
DOI: https://doi.org/10.1090/S0002-9939-1987-0866440-5
MathSciNet review: 866440
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ X$ be a complex Banach space, $ (\Omega ,\sum ,\mu )$ a finite measure space, and $ 1 \leq p < \infty $. Then $ {L_p}(\mu ;X)$ has the analytic Radon-Nikodym property if and only if $ X$ has it.


References [Enhancements On Off] (What's this?)

  • [1] V. Aurich, Bounded holomorphic embeddings of the unit disk into Banach spaces, Manuscripta Math. 45 (1983), 61-68. MR 722922 (85b:58012)
  • [2] A. V. Bukhvalov and A. A. Danilevich, Boundary properties of analytic and harmonic functions with values in Banach spaces, Math. Notes 31 (1982), 104-110. MR 649004 (84f:46032)
  • [3] J. Diestel and J. J. Uhl, Vector measures, Math. Surveys, no. 15, Amer. Math. Soc., Providence, R.I., 1977. MR 0453964 (56:12216)
  • [4] S. Dineen, Complex analysis in locally convex spaces, North-Holland Math. Stud., vol. 57, North-Holland, Amsterdam, 1981. MR 640093 (84b:46050)
  • [5] P. N. Dowling, Representable operators and the analytic Radon-Nikodym property in Banach spaces (to appear). MR 845538 (87h:46059)
  • [6] G. A. Edgar, Complex Martingale convergence, preprint. MR 827757 (88a:46013)
  • [7] -, Analytic martingale convergence, preprint.
  • [8] E. Hille and R. S. Phillips, Functional analysis and semi-groups, Amer. Math. Soc. Colloq. Publ., vol. 31, Amer. Math. Soc., Providence, R. I., 1957. MR 0089373 (19:664d)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46E40, 46B22

Retrieve articles in all journals with MSC: 46E40, 46B22


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1987-0866440-5
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society