Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Extremal multilinear forms on Banach spaces

Author: I. Sarantopoulos
Journal: Proc. Amer. Math. Soc. 99 (1987), 340-346
MSC: Primary 46B20; Secondary 46G20
MathSciNet review: 870797
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Suppose that $ L$ is a continuous symmetric $ m$-linear form defined on a complex Banach space $ E$, and $ \hat L$ is the associated homogeneous polynomial. If

$\displaystyle \vert\vert L \vert\vert = ({m^m}/m!)\vert\vert {\hat L} \vert\vert,$

we prove that $ E$ contains an almost isometric copy of $ l_m^1$. In particular if $ E$ is an $ m$-dimensional space, then $ E$ is isometrically isomorphic to $ l_m^1$. We also prove that the only examples of such extremal $ L$ which achieve their norm are suitable "extensions" of a known example given by Nachbin.

References [Enhancements On Off] (What's this?)

  • [1] S. B. Chae, Holomorphy and calculus in normed spaces, Dekker, New York, 1985. MR 788158 (86j:46044)
  • [2] L. A. Harris, Bounds on the derivatives of holomorphic functions of vectors, Colloque d'Analyse (L. Nachbin, ed.), Rio de Janeiro, 1972, Actualités Sci. Indust., no. 1367, Hermann, Paris, 1975, pp. 145-163. MR 0477773 (57:17283)
  • [3] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces. II. Function spaces, Ergebnisse der Math., Band 97, Springer, 1979. MR 540367 (81c:46001)
  • [4] R. S. Martin, Thesis, California Inst, of Tech., 1932.
  • [5] I. Sarantopoulos, Estimates for polynomial norms on $ {L^p}(\mu )$-spaces, Math. Proc. Cambridge Philos. Soc. 99 (1986), 263-271. MR 817668 (87i:46050)
  • [6] Seminaire Maurey-Schwartz, Exposé VII, 1973-74.
  • [7] A. M. Tonge, Polarization and the complex Grothendieck inequality, Math. Proc. Cambridge Philos. Soc. 95 (1984), 313-318. MR 735372 (85f:46039)
  • [8] The Scottish Book (Mathematics from the Scottish Café) (R. D. Mauldin, ed.), Birkhaüser, Boston, Mass., 1981. MR 666400 (84m:00015)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46B20, 46G20

Retrieve articles in all journals with MSC: 46B20, 46G20

Additional Information

Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society