Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Rational surfaces with infinite automorphism group and no antipluricanonical curve


Author: Brian Harbourne
Journal: Proc. Amer. Math. Soc. 99 (1987), 409-414
MSC: Primary 14J26; Secondary 14E05
DOI: https://doi.org/10.1090/S0002-9939-1987-0875372-8
MathSciNet review: 875372
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Counterexamples are given to a conjecture communicated to me by I. Dolgachev and E. Looijenga of M. Gizatullin that every rational surface with an infinite automorphism group should have an antipluricanonical curve.


References [Enhancements On Off] (What's this?)

  • [D1] I. Dolgachev, On automorphisms of Enriques surfaces, Invent. Math. 76 (1984), 163-177. MR 739632 (85j:14076)
  • [D2] -, The Euler characteristic of a family of algebraic varieties, Math. USSR-Sb. 18 (1972), 303-319.
  • [G] M. H. Gizatullin, Rational $ G$-surfaces, Math. USSR-Izv. 16 (1981), 103-134.
  • [H1] B. Harbourne, Blowings-up of $ {\mathbb{P}^2}$ and their blowings-down, Duke Math. J. 52 (1985), 124-148. MR 791295 (86m:14026)
  • [H2] -, Complete linear systems on rational surfaces, Trans. Amer. Math. Soc. 289 (1985), 213-226. MR 779061 (86h:14030)
  • [Hu] J. E. Humphreys, Linear algebraic groups, Springer-Verlag, Berlin-Heidelberg-New York, 1975, pp. xiv, 247. MR 0396773 (53:633)
  • [K] K. Kodaira, On compact analytic surfaces. II, Ann. of Math. 77 (1963), 563-626.
  • [M] Yu. Manin, The Tate height of points on an Abelian variety, its variants and applications, Izv. Akad. Nauk SSSR Ser. Mat. 28 (1964), 1363-1390. (Russian) (Math. Rev. 30, #3886) MR 0173676 (30:3886)
  • [N] M. Nagata, On rational surfaces. I, Mem. Coll. Sci. Kyoto (A) 33 (1960), 352-370. MR 0126444 (23:A3740)
  • [Nr] A. Néron, Modèles minimaux des variétés abéliennes sur les corps locaux et globaux, Inst. Hautes Études Sci. Publ. Math. 21 (1964). MR 0179172 (31:3423)
  • [R] M. Rosenlicht, A remark on quotient spaces, An. Acad. Brasil Cienĉ. 35 (1963), 486-489. MR 0171782 (30:2009)
  • [Z1] O. Zariski, Introduction to the problem of minimal models in the theory of algebraic surfaces, Publ. Math. Soc. Japan 4 (1958), vii, 89. MR 0097403 (20:3872)
  • [Z2] -, Pencils on an algebraic variety and a new proof of a theorem of Bertini, Trans. Amer. Math. Soc. 50 (1941), 48-70. MR 0004241 (2:345a)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 14J26, 14E05

Retrieve articles in all journals with MSC: 14J26, 14E05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1987-0875372-8
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society