Three theorems on form rings

Author:
Louis J. Ratliff

Journal:
Proc. Amer. Math. Soc. **99** (1987), 432-436

MSC:
Primary 13E05; Secondary 13A17, 13C15

MathSciNet review:
875376

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Three theorems concerning the form ring (= associated graded ring) of an ideal in a Noetherian ring are proved. The first characterizes, for a -primary ideal in a locally quasi-unmixed ring, when is an integral domain in terms of when is an integral domain. For an aribtrary Noetherian ring the second gives a somewhat similar characterization for to have only one prime divisor of zero for some ideal that is projectively equivalent to . And the third characterizes unmixed semilocal rings in terms of the existence of an open ideal such that the zero ideal in is isobathy.

**[1]**Craig Huneke,*On the associated graded ring of an ideal*, Illinois J. Math.**26**(1982), no. 1, 121–137. MR**638557****[2]**Daniel Katz and Louis J. Ratliff Jr.,*𝑢-essential prime divisors and sequences over an ideal*, Nagoya Math. J.**103**(1986), 39–66. MR**858471****[3]**Stephen McAdam,*Asymptotic prime divisors*, Lecture Notes in Mathematics, vol. 1023, Springer-Verlag, Berlin, 1983. MR**722609****[4]**Stephen McAdam and L. J. Ratliff Jr.,*Essential sequences*, J. Algebra**95**(1985), no. 1, 217–235. MR**797664**, 10.1016/0021-8693(85)90102-4**[5]**Masayoshi Nagata,*On the chain problem of prime ideals*, Nagoya Math. J.**10**(1956), 51–64. MR**0078974****[6]**Masayoshi Nagata,*Local rings*, Interscience Tracts in Pure and Applied Mathematics, No. 13, Interscience Publishers a division of John Wiley & Sons New York-London, 1962. MR**0155856****[7]**L. J. Ratliff Jr.,*On prime divisors of the integral closure of a principal ideal*, J. Reine Angew. Math.**255**(1972), 210–220. MR**0311638****[8]**L. J. Ratliff Jr.,*On the prime divisors of zero in form rings*, Pacific J. Math.**70**(1977), no. 2, 489–517. MR**0491648****[9]**L. J. Ratliff Jr.,*Powers of ideals in locally unmixed Noetherian rings*, Pacific J. Math.**107**(1983), no. 2, 459–472. MR**705759****[10]**L. J. Ratliff Jr.,*On linearly equivalent ideal topologies*, J. Pure Appl. Algebra**41**(1986), no. 1, 67–77. MR**844465**, 10.1016/0022-4049(86)90101-5**[11]**L. J. Ratliff Jr.,*The topology determined by the symbolic powers of primary ideals*, Comm. Algebra**13**(1985), no. 9, 2073–2104. MR**795491**, 10.1080/00927878508823265**[12]**L. J. Ratliff Jr.,*Five notes on asymptotic prime divisors*, Math. Z.**190**(1985), no. 4, 567–581. MR**808923**, 10.1007/BF01214755**[13]**D. Rees,*A note on form rings and ideals*, Mathematika**4**(1957), 51–60. MR**0090588****[14]**Motoyoshi Sakuma and Hiroshi Okuyama,*On a criterion for analytically unramification of a local ring*, J. Gakugei Tokushima Univ.**15**(1966), 36–38. MR**0200290****[15]**Peter Schenzel,*Symbolic powers of prime ideals and their topology*, Proc. Amer. Math. Soc.**93**(1985), no. 1, 15–20. MR**766518**, 10.1090/S0002-9939-1985-0766518-9

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
13E05,
13A17,
13C15

Retrieve articles in all journals with MSC: 13E05, 13A17, 13C15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1987-0875376-5

Keywords:
Analytically unramified semilocal ring,
asymptotic prime divisor,
analytic spread of an ideal,
essential prime divisor,
form ring,
integral closure of an ideal,
isobathy ideal,
Noetherian ring,
normal ideal,
projectively equivalent ideals,
quasi-unmixed local ring,
Rees ring,
unmixed local ring,
-essential prime divisor

Article copyright:
© Copyright 1987
American Mathematical Society