Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Remote Access
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

A note on the $ bP$-component of $ (4n-1)$-dimensional homotopy spheres


Author: Stephan Stolz
Journal: Proc. Amer. Math. Soc. 99 (1987), 581-584
MSC: Primary 57R60; Secondary 57R20, 57R55
MathSciNet review: 875404
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The $ bP$-component of a $ \left( {4n - 1} \right)$-dimensional homotopy sphere $ \Sigma \in {\theta _{4n - 1}} \cong b{P_{4n}} \oplus {\left( {{\text{Co}}\ker J} \right)_{4n - 1}}$ bounding a spin manifold $ M$ is shown to be computable in terms of the signature and the decomposable Pontrjagin numbers of $ M$.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 57R60, 57R20, 57R55

Retrieve articles in all journals with MSC: 57R60, 57R20, 57R55


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1987-0875404-7
PII: S 0002-9939(1987)0875404-7
Article copyright: © Copyright 1987 American Mathematical Society