Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A note on the $ bP$-component of $ (4n-1)$-dimensional homotopy spheres


Author: Stephan Stolz
Journal: Proc. Amer. Math. Soc. 99 (1987), 581-584
MSC: Primary 57R60; Secondary 57R20, 57R55
DOI: https://doi.org/10.1090/S0002-9939-1987-0875404-7
MathSciNet review: 875404
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The $ bP$-component of a $ \left( {4n - 1} \right)$-dimensional homotopy sphere $ \Sigma \in {\theta _{4n - 1}} \cong b{P_{4n}} \oplus {\left( {{\text{Co}}\ker J} \right)_{4n - 1}}$ bounding a spin manifold $ M$ is shown to be computable in terms of the signature and the decomposable Pontrjagin numbers of $ M$.


References [Enhancements On Off] (What's this?)

  • [1] G. Brumfiel, On the homotopy groups of BPL and $ PL/O$, Ann. of Math. (2) 88 (1968), 291-311. MR 0234458 (38:2775)
  • [2] -, Homotopy equivalences of almost smooth manifolds, Comment Math. Helv. 46 (1971), 381-407. MR 0305419 (46:4549)
  • [3] J. Eells and N. Kuiper, An invariant for certain smooth manifolds, Ann. Mat. Pura Appl. 60 (1962), 93-110. MR 0156356 (27:6280)
  • [4] F. Hirzebruch, Topological methods in algebraic geometry, 2nd corrected printing of the 3rd ed., Springer, 1978. MR 1335917 (96c:57002)
  • [5] M. Kervaire and J. Milnor, Groups of homotopy spheres. I, Ann. of Math. (2) 77 (1963), 504-537. MR 0148075 (26:5584)
  • [6] R. Lampe, Diffeomorphismen auf Sphären und die Milnor-Paarung, Diplomarbeit, Mainz, 1981.
  • [7] J. Milnor and J. Stashoff, Characteristic classes, Ann. of Math. Studies, no. 76, Princeton Univ. Press, Princeton, N. J., 1974. MR 0440554 (55:13428)
  • [8] S. Stolz, Hochzusammenhängende Mannigfaltigkeiten und ihre Ränder, Lecture Notes in Math., vol. 1116, Springer-Verlag, Berlin and New York, 1985. MR 871476 (88f:57061)
  • [9] C. T. C. Wall, Classification of $ \left( {n - 1} \right)$-connected $ 2n$-manifolds, Ann. of Math. (2) 75 (1962), 163-189. MR 0145540 (26:3071)
  • [10] -, Classification of $ \left( {n - 1} \right)$-connected $ \left( {2n + 1} \right)$-manifolds, Topology 6 (1967), 273-296. MR 0216510 (35:7343)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 57R60, 57R20, 57R55

Retrieve articles in all journals with MSC: 57R60, 57R20, 57R55


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1987-0875404-7
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society