Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The asymptotic behavior of univalent functions


Authors: Ke Hu and Xin Han Dong
Journal: Proc. Amer. Math. Soc. 100 (1987), 75-81
MSC: Primary 30C75; Secondary 30C50
DOI: https://doi.org/10.1090/S0002-9939-1987-0883404-6
MathSciNet review: 883404
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We generalize Bazilevic's Theorem and provide an alternative proof of an important theorem of Hamilton.


References [Enhancements On Off] (What's this?)

  • [1] I. E. Bazilevic, Coefficient dispersion of univalent functions, Mat. Sb. 68(110) (1965), 549-560. (Russian) MR 0192040 (33:267)
  • [2] B. G. Eke, The asymptotic behaviour of a really mean valent functions, J. Analyse Math. 20(1967), 147-212. MR 0222279 (36:5331)
  • [3] D. H. Hamilton, The successive coefficients of univalent functions, J. London Math. Soc. 25(1982), 122-138. MR 645870 (83i:30009)
  • [4] W. K. Hayman, On successive coefficients of univalent functions, J. London Math. Soc. 38(1963), 228-243. MR 0148885 (26:6382)
  • [5] Hu Ke, Some properties of univalent functions, J. Jiangxi Normal Univ. 3 (1986), 1-6.
  • [6] I. M. Milin, Univalent functions and orthonormal systems, Izdat "Nauka", Moskow, 1971, pp. 38-50 (Russian). MR 0369684 (51:5916)
  • [7] Ch. Pommerenke, Univalent functions, Vandenhoeck and Ruprecht, Göttingen, 1973, pp. 141-145. MR 0507768 (58:22526)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30C75, 30C50

Retrieve articles in all journals with MSC: 30C75, 30C50


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1987-0883404-6
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society