A small arithmetic hyperbolic three-manifold

Author:
Ted Chinburg

Journal:
Proc. Amer. Math. Soc. **100** (1987), 140-144

MSC:
Primary 57S30; Secondary 22E40, 30F40, 51M10, 57N10

MathSciNet review:
883417

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The hyperbolic three-manifold which results from Dehn surgery on the complement of a figure-eight knot in is arithmetic.

**[1]**A. Borel,*Commensurability classes and volumes of hyperbolic 3-manifolds*, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)**8**(1981), no. 1, 1–33. MR**616899****[2]**Ted Chinburg and Eduardo Friedman,*The smallest arithmetic hyperbolic three-orbifold*, Invent. Math.**86**(1986), no. 3, 507–527. MR**860679**, 10.1007/BF01389265**[3]**H. J. Godwin,*On quartic fields of signature one with small discriminant*, Quart. J. Math. Oxford Ser. (2)**8**(1957), 214–222. MR**0097375****[4]**R. Meyerhoff,*A lower bound for the volume of hyperbolic**-manifolds*, preprint (1982).**[5]**John Milnor,*Hyperbolic geometry: the first 150 years*, Bull. Amer. Math. Soc. (N.S.)**6**(1982), no. 1, 9–24. MR**634431**, 10.1090/S0273-0979-1982-14958-8**[6]**Robert Riley,*A quadratic parabolic group*, Math. Proc. Cambridge Philos. Soc.**77**(1975), 281–288. MR**0412416****[7]**W. Thurston,*The geometry and topology of**-manifolds*, Princeton Univ. preprint (1978).**[8]**William P. Thurston,*Three-dimensional manifolds, Kleinian groups and hyperbolic geometry*, Bull. Amer. Math. Soc. (N.S.)**6**(1982), no. 3, 357–381. MR**648524**, 10.1090/S0273-0979-1982-15003-0**[9]**J. Weeks,*Hyperbolic structures on three-manifolds*, Princeton Ph.D. thesis (1985).

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
57S30,
22E40,
30F40,
51M10,
57N10

Retrieve articles in all journals with MSC: 57S30, 22E40, 30F40, 51M10, 57N10

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1987-0883417-4

Article copyright:
© Copyright 1987
American Mathematical Society