Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Daugavet's equation and operators on $ L\sp 1(\mu)$


Author: James R. Holub
Journal: Proc. Amer. Math. Soc. 100 (1987), 295-300
MSC: Primary 47B38; Secondary 47B05
DOI: https://doi.org/10.1090/S0002-9939-1987-0884469-8
MathSciNet review: 884469
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Generalizing a result of Babenko and Pichugov, it is shown that if $ T$ is a weakly compact operator on $ {L^1}(\mu )$, where $ \mu $ is a $ \sigma $-finite nonatomic measure, then $ \left\Vert {I + T} \right\Vert = 1 + \left\Vert T \right\Vert$. A characterization of all operators $ T$ on $ {L^1}(\mu )$ having this property is also given.


References [Enhancements On Off] (What's this?)

  • [1] V. F. Babenko and S. A. Pichugov, A property of compact operators in the space of integrable functions, Ukrainian Math. J. 33 (1981), 374-376.
  • [2] I. K. Daugavet, A property of compact operators in the space $ C$, Uspekhi Mat. Nauk 18 (1963), 157-158. (Russian) MR 0157225 (28:461)
  • [3] N. Dunford and J. Schwartz, Linear operators, Part I, Interscience, New York, 1963. MR 0188745 (32:6181)
  • [4] C. Franchetti and E. W. Cheney, Minimal projections in tensor-product spaces, J. Approx. Theory 4 (1984), 367-381. MR 753032 (86k:46019)
  • [5] J. Holub, A property of weakly compact operators on $ C[0,1]$, Proc. Amer. Math. Soc. 97 (1986), 396-398. MR 840617 (87j:47028)
  • [6] H. Kamowitz, A property of compact operators, Proc. Amer. Math. Soc. 91 (1984), 231-236. MR 740177 (86h:47043)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47B38, 47B05

Retrieve articles in all journals with MSC: 47B38, 47B05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1987-0884469-8
Keywords: Weakly compact operator, Daugavet's equation, operator norm equalities
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society