Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Minimality of geodesics in Grassmann manifolds


Authors: Horacio Porta and Lázaro Recht
Journal: Proc. Amer. Math. Soc. 100 (1987), 464-466
MSC: Primary 46L05; Secondary 58B20
DOI: https://doi.org/10.1090/S0002-9939-1987-0891146-6
MathSciNet review: 891146
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In the Grassmann manifold of an arbitrary $ {C^ * }$-algebra, the geodesics of length less than $ \pi $ are curves of minimal length.


References [Enhancements On Off] (What's this?)

  • [A] William Arveson, An invitation to 𝐶*-algebras, Springer-Verlag, New York-Heidelberg, 1976. Graduate Texts in Mathematics, No. 39. MR 0512360
  • [W] Joseph A. Wolf, Spaces of constant curvature, 2nd ed., Department of Mathematics, University of California, Berkeley, Calif., 1972. MR 0343213

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46L05, 58B20

Retrieve articles in all journals with MSC: 46L05, 58B20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1987-0891146-6
Article copyright: © Copyright 1987 American Mathematical Society