Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Remarks on linear differential systems with measurable coefficients


Author: Russell A. Johnson
Journal: Proc. Amer. Math. Soc. 100 (1987), 491-504
MSC: Primary 34A30; Secondary 34C35, 47B99, 54H20
DOI: https://doi.org/10.1090/S0002-9939-1987-0891153-3
MathSciNet review: 891153
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We discuss several topics having to do with linear differential equations with locally integrable coefficients. These include gap labelling and Cantor spectrum for the random Schrodinger operator, and Coppel's perturbation theorem.


References [Enhancements On Off] (What's this?)

  • [1] M. Ablowitz, D. Kaup, A. Newell, and H. Segur, The inverse scattering transform: Fourier analysis for non-linear systems, Stud. Appl. Math. 53 (1974), 249-315. MR 0450815 (56:9108)
  • [2] J. Avron and B. Simon, Almost periodic Schrodinger operators. II, The integrated density of states, Duke Math. J. 50 (1983), 369-391. MR 700145 (85i:34009a)
  • [3] J. Bellissard and E. Scoppola, The density of states for almost-periodic Schrodinger operators and the freguency module: a counterexample, Comm. Math. Phys. 85 (1982), 301-308. MR 676003 (84e:47042)
  • [4] J. Bellissard and B. Simon, Cantor spectrum for the almost Mathieu eguation, J. Funct. Anal. 48 (1982), 408-419. MR 678179 (84h:81019)
  • [5] E. Coddington and N. Levinson, Theory of ordinary differential equations, McGraw-Hill, New York, 1955. MR 0069338 (16:1022b)
  • [6] A. Coppel, Dichotomies in stability theory, Lecture Notes in Math., vol. 629, Springer-Verlag, Berlin and New York, 1978. MR 0481196 (58:1332)
  • [7] C. De Concini and R. Johnson, The algebraic-geometric AKNS potentials, Ergodic Theory Dynamical Systems (to appear). MR 886368 (88f:58065)
  • [8] I. Dinaburg and Ya. Sinai, On the one-dimensional Schrodinger equation with quasi-periodic potential, Functional Anal. Appl 9 (1975), 8-21.
  • [9] J. Doob, Stochastic processes, Wiley, New York, 1953. MR 0058896 (15:445b)
  • [10] R. Ellis, Lectures on topological dynamics, Benjamin, New York, 1967. MR 0267561 (42:2463)
  • [11] R. Ellis and R. Johnson, Topological dynamics and linear differential systems, J. Differential Equations 44 (1982), 21-39. MR 651685 (83c:54058)
  • [12] A. Fink, Almost periodic differential equations, Lecture Notes in Math., Vol. 377, Springer-Verlag, Berlin and New York, 1974. MR 0460799 (57:792)
  • [13] R. Giachetti and R. Johnson, Spectral theory of two-dimensional, almost-periodic differential operators and its relation to certain non-linear evolution equations, Nuovo Cimento B (11) 82 (1984), 125-168. MR 770735 (86j:58127)
  • [14] M. Hirsch, C. Pugh, and M. Shub, Invariant manifolds, Lecture Notes in Math., Vol. 583, Springer-Verlag, Berlin and New York, 1977. MR 0501173 (58:18595)
  • [15] R. Johnson, Exponential dichotomy, rotation number, and linear differential equations with bounded coefficients, J. Differential Equations 61 (1986), 54-78. MR 818861 (87e:47065)
  • [16] -, $ m$-functions and Floquet exponents for linear differential systems, Ann. Mat. Pura Appl. (to appear).
  • [17] -, The recurrent Hill's equation, J. Differential Equations 46 (1982), 165-194. MR 675906 (84m:34037)
  • [18] R. Johnson and J. Moser, The rotation number for almost periodic potentials, Comm. Math. Phys. 84 (1982), 403-438. MR 667409 (83h:34018)
  • [19] R. Johnson, K. Palmer and G. Sell, Ergodic properties of linear dynamical systems, SIAM J. Math. Anal, (to appear). MR 871817 (88a:58112)
  • [20] S. Kotani, Lyapounov indices determine absolutely continuous spectra of stationary random onedimensional Schrodinger operators, Proc. Taniguchi Sympos. SA, Katata, 1982, pp. 225-247. MR 780760 (86h:60117)
  • [21] -, On an inverse problem for random Schrodinger operators, Particle Systems, Random Media and Large Derivations, edited by Richard Durrett, Contemporary Math., vol. 41, Amer. Math. Soc., Providence, R.I., 1985, pp. 267-280. MR 814717 (87j:60095)
  • [22] -, Support theorems for random Schrodinger operators, Comm. Math. Phys. 97 (1985), 443-452. MR 778625 (86k:60116)
  • [23] H. McKean and P. van Moerbeke, The spectrum of Hill's equation, Invent Math. 30 (1975), 217-274. MR 0397076 (53:936)
  • [24] R. Miller and G. Sell, Volterra integral equations and topological dynamics, Mem. Amer. Math. Soc., No. 102 (1970). MR 0288381 (44:5579)
  • [25] V. Millionscikov, Proof of the existence of irregular systems of linear differential equations with almost periodic coefficients, J. Differential Equations 4 (1968), 203-205. MR 0229912 (37:5478)
  • [26] J. Moser and J. Poschl, An extension of a result by Dinaburg and Sinai on quasi-periodic potentials, Comment. Math. Helv. 59 (1984), 39-85. MR 743943 (85m:34064)
  • [27] S. Novikov, The periodic Korteweg-de Vries problem, Functional Anal. Appl. 8 (1974), 54-66. MR 0382878 (52:3760)
  • [28] V. Oseledec, A multiplicative ergodic theorem. Lyapounov characteristic numbers for dynamical systems, Trans. Moscow Math. Soc. 19 (1968), 197-231. MR 0240280 (39:1629)
  • [29] K. Palmer, On Cherry's example of a differential equation with a homoclinic point, preprint, 1985.
  • [30] F. Riesz and B. Sz.-Nagy, Vorlesungen über Funktionalanalysis, Deutscher Verlag der Wissenschaften, Berlin, 1973. MR 0344831 (49:9570)
  • [31] R. Sacker and G. Sell, Existence of dichotomies and invariant splittings for linear differential systems. I, J. Differential Equations 15 (1974), 429-458. MR 0341458 (49:6209)
  • [32] -, A spectral theory for linear differential systems, J. Differential Equations 27 (1978), 320-358. MR 0501182 (58:18604)
  • [33] S. Schwarzmann, Asymptotic cycles, Ann. of Math. 66 (1957), 270-284. MR 0088720 (19:568i)
  • [34] J. Selgrade, Isolated invariant sets for flows on vector bundles, Trans. Amer. Math. Soc. 203 (1975), 359-390. MR 0368080 (51:4322)
  • [35] G. Sell, Topological dynamics and linear differential equations, Van Nostrand-Reinhold, New York, 1971. MR 0442908 (56:1283)
  • [36] R. Vinograd, A problem suggested by N. P. Erugin, J. Differential Equations 11 (1975), 474-478. MR 0473360 (57:13028)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 34A30, 34C35, 47B99, 54H20

Retrieve articles in all journals with MSC: 34A30, 34C35, 47B99, 54H20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1987-0891153-3
Keywords: Exponential dichotomy, Cantor spectrum
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society