Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On Cournot-Nash equilibria in generalized qualitative games with an atomless measure space of agents


Authors: M. Ali Khan and Nikolaos S. Papageorgiou
Journal: Proc. Amer. Math. Soc. 100 (1987), 505-510
MSC: Primary 90A14; Secondary 28A33, 46G99, 90D13
DOI: https://doi.org/10.1090/S0002-9939-1987-0891154-5
MathSciNet review: 891154
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We present a result on the existence of Cournot-Nash equilibria in games with an atomless measure space of players each with nonordered preferences and with strategy sets in a separable Banach space. Our result dispenses with any convexity assumption on the preference correspondence.


References [Enhancements On Off] (What's this?)

  • [1] C. Berge, Topological spaces, Macmillan, New York, 1963.
  • [2] C. Castaing and M. Valadier, Convex analysis and measurable multifunctions, Lecture Notes in Math., vol. 580, Springer-Verlag, Berlin and New York, 1977. MR 0467310 (57:7169)
  • [3] N. Dunford and J. T. Schwartz, Linear operators, vol. 1, Wiley, New York, 1958.
  • [4] B. Grodal, A comment on Khan-Vohra, private communication, September 1985.
  • [5] A. Kolmogorov and S. Fomin, Introductory real analysis, Dover, New York, 1970. MR 0267052 (42:1954)
  • [6] M. Ali Khan, On extensions of the Cournot-Nash Theorem, Advances in Equilibrium Theory (C. D. Aliprantis et al., eds.), Springer-Verlag, Berlin and New York, 1985. MR 873761 (88d:90129)
  • [7] -, Equilibrium points of nonatomic games over a Banach space, Trans. Amer. Math. Soc. 293 (1986), 737-749 MR 816322 (87f:90035)
  • [8] M. Ali Khan and N. Papageorgiou, On Cournot-Nash equilibria, Generalized Qualitative Games with a Continuum of Players, BEBR Faculty Paper No. 1126, March 1985; Nonlinear Anal, (to appear). MR 893778 (88h:90042a)
  • [9] M. Ali Khan and R. Vohra, Equilibrium in abstract economies without ordered preferences and with a measure space of agents, J. Math. Econom. 13 (1984), 133-142. MR 758569 (86j:90033)
  • [10] T. Kim, K. Prikry, and N. Yannelis, Equilibria in abstract economies with a measure space and with an infinite dimensional strategy space, University of Minnesota Discussion Paper No. 218, July 1985.
  • [11] -, On a Carathéodory-type selection theorem, Univ. of Minnesota Discussion Paper No. 217, July 1985.
  • [12] N. S. Papageorgiou, Representation of set-valued operators, Trans. Amer. Math. Soc. 292 (1985), 557-572. MR 808737 (87c:47085)
  • [13] D. Schmeidler, Equilibrium points of nonatomic games, J. Statist. Phys. 7 (1973), 295-300. MR 0465225 (57:5132)
  • [14] W. Shafer and H. Sonnenschein, Equilibrium in abstract economies without ordered preferences, J. Math. Econom. 2 (1975), 345-348. MR 0398464 (53:2315)
  • [15] N. C. Yannelis, Equilibria in non-cooperative models of competition, J. Econom. Theory (to appear). MR 875986 (88h:90048)
  • [16] N. C. Yannelis and N. D. Prabhakar, Existence of maximal elements and equilibria in linear topological spaces, J. Math. Ecomon. 12 (1983), 233-245. MR 743037 (87h:90061a)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 90A14, 28A33, 46G99, 90D13

Retrieve articles in all journals with MSC: 90A14, 28A33, 46G99, 90D13


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1987-0891154-5
Keywords: Measurable selector, multifunction, fixed point, generalized qualitative games, Cournot-Nash equilibrium
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society