On Cournot-Nash equilibria in generalized qualitative games with an atomless measure space of agents

Authors:
M. Ali Khan and Nikolaos S. Papageorgiou

Journal:
Proc. Amer. Math. Soc. **100** (1987), 505-510

MSC:
Primary 90A14; Secondary 28A33, 46G99, 90D13

MathSciNet review:
891154

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We present a result on the existence of Cournot-Nash equilibria in games with an atomless measure space of players each with nonordered preferences and with strategy sets in a separable Banach space. Our result dispenses with any convexity assumption on the preference correspondence.

**[1]**C. Berge,*Topological spaces*, Macmillan, New York, 1963.**[2]**C. Castaing and M. Valadier,*Convex analysis and measurable multifunctions*, Lecture Notes in Mathematics, Vol. 580, Springer-Verlag, Berlin-New York, 1977. MR**0467310****[3]**N. Dunford and J. T. Schwartz,*Linear operators*, vol. 1, Wiley, New York, 1958.**[4]**B. Grodal,*A comment on Khan-Vohra*, private communication, September 1985.**[5]**A. N. Kolmogorov and S. V. Fomin,*Introductory real analysis*, Revised English edition. Translated from the Russian and edited by Richard A. Silverman, Prentice-Hall, Inc., Englewood Cliffs, N.Y., 1970. MR**0267052****[6]**M. Ali Khan,*On extensions of the Cournot-Nash theorem*, Advances in equilibrium theory (Indianapolis, Ind., 1984) Lecture Notes in Econom. and Math. Systems, vol. 244, Springer, Berlin, 1985, pp. 79–106. MR**873761**, 10.1007/978-3-642-51602-3_5**[7]**M. Ali Khan,*Equilibrium points of nonatomic games over a Banach space*, Trans. Amer. Math. Soc.**293**(1986), no. 2, 737–749. MR**816322**, 10.1090/S0002-9947-1986-0816322-3**[8]**M. Ali Khan and Nikolaos S. Papageorgiou,*On Cournot-Nash equilibria in generalized qualitative games with a continuum of players*, Nonlinear Anal.**11**(1987), no. 6, 741–755. MR**893778**, 10.1016/0362-546X(87)90040-X**[9]**M. Ali Khan and Rajiv Vohra,*Equilibrium abstract economies without ordered preferences and with a measure space of agents*, J. Math. Econom.**13**(1984), no. 2, 133–142. MR**758569**, 10.1016/0304-4068(84)90013-2**[10]**T. Kim, K. Prikry, and N. Yannelis,*Equilibria in abstract economies with a measure space and with an infinite dimensional strategy space*, University of Minnesota Discussion Paper No. 218, July 1985.**[11]**-,*On a Carathéodory-type selection theorem*, Univ. of Minnesota Discussion Paper No. 217, July 1985.**[12]**Nikolaos S. Papageorgiou,*Representation of set valued operators*, Trans. Amer. Math. Soc.**292**(1985), no. 2, 557–572. MR**808737**, 10.1090/S0002-9947-1985-0808737-3**[13]**David Schmeidler,*Equilibrium points of nonatomic games*, J. Statist. Phys.**7**(1973), 295–300. MR**0465225****[14]**Wayne Shafer and Hugo Sonnenschein,*Equilibrium in abstract economies without ordered preferences*, J. Math. Econom.**2**(1975), no. 3, 345–348. MR**0398464****[15]**Nicholas C. Yannelis,*Equilibria in noncooperative models of competition*, J. Econom. Theory**41**(1987), no. 1, 96–111. MR**875986**, 10.1016/0022-0531(87)90007-X**[16]**Nicholas C. Yannelis and N. D. Prabhakar,*Existence of maximal elements and equilibria in linear topological spaces*, J. Math. Econom.**12**(1983), no. 3, 233–245. MR**743037**, 10.1016/0304-4068(83)90041-1

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
90A14,
28A33,
46G99,
90D13

Retrieve articles in all journals with MSC: 90A14, 28A33, 46G99, 90D13

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9939-1987-0891154-5

Keywords:
Measurable selector,
multifunction,
fixed point,
generalized qualitative games,
Cournot-Nash equilibrium

Article copyright:
© Copyright 1987
American Mathematical Society