Sequentially compact, FranklinRajagopalan spaces
Authors:
P. J. Nyikos and J. E. Vaughan
Journal:
Proc. Amer. Math. Soc. 101 (1987), 149155
MSC:
Primary 54D30; Secondary 03E35
MathSciNet review:
897087
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: A locally compact space is called a FranklinRajagopalan space (or FRspace) provided it has a countable discrete dense subset whose complement is homeomorphic to an ordinal with the order topology. We show that (1) every sequentially compact FRspace can be identified with a space constructed from a tower on , and (2) for an ultrafilter on , a sequentially compact FRspace is not compact if and only if there exists an ultrafilter on such that , and is below in the RudinKeisler order on . As one application of these results we show that in certain models of set theory there exists a family of towers such that , and is a product of sequentially compact FRspaces which is not countably compact (a new solution to the ScarboroughStone problem). As further applications of these results, we give consistent answers to questions of van Douwen, Stephenson, and Vaughan concerning initially chain compact and totally initially compact spaces.
 [BFM]
Bohuslav
Balcar, Ryszard
Frankiewicz, and Charles
Mills, More on nowhere dense closed 𝑃sets, Bull.
Acad. Polon. Sci. Sér. Sci. Math. 28 (1980),
no. 56, 295–299 (1981) (English, with Russian summary). MR 620204
(82i:54068)
 [B]
Allen
R. Bernstein, A new kind of compactness for topological
spaces, Fund. Math. 66 (1969/1970), 185–193. MR 0251697
(40 #4924)
 [CN]
W.
W. Comfort and S.
Negrepontis, The theory of ultrafilters, SpringerVerlag, New
York, 1974. Die Grundlehren der mathematischen Wissenschaften, Band 211. MR 0396267
(53 #135)
 [vD]
Eric K. van Douwen, Hausdorff gaps and a nice countably paracompact nonnormal space, Topology Proc. 1 (1976), 239242.
 [vD]
Kenneth
Kunen and Jerry
E. Vaughan (eds.), Handbook of settheoretic topology,
NorthHolland Publishing Co., Amsterdam, 1984. MR 776619
(85k:54001)
 [vD]
, The product of two normal initially compact spaces (to appear).
 [FR]
S.
P. Franklin and M.
Rajagopalan, Some examples in topology, Trans. Amer. Math. Soc. 155 (1971), 305–314. MR 0283742
(44 #972), http://dx.doi.org/10.1090/S00029947197102837427
 [H]
Stephen
H. Hechler, On the existence of certain cofinal subsets of
^{𝜔}𝜔, Axiomatic set theory (Proc. Sympos. Pure Math.,
Vol. XIII, Part II, Univ. California, Los Angeles, Calif., 1967), Amer.
Math. Soc., Providence, R.I., 1974, pp. 155–173. MR 0360266
(50 #12716)
 [JNW]
I.
Juhász, Zs.
Nagy, and W.
Weiss, On countably compact, locally countable spaces, Period.
Math. Hungar. 10 (1979), no. 23, 193–206. MR 539228
(80h:54025), http://dx.doi.org/10.1007/BF02025892
 [L]
Ronnie
Levy, Pseudocompactness and extension of functions in
FranklinRajagopalan spaces, Topology Appl. 11
(1980), no. 3, 297–303. MR 585275
(82a:54042), http://dx.doi.org/10.1016/01668641(80)900292
 [R]
M.
Rajagopalan, Some outstanding problems in topology and the
𝑉process, Categorical topology (Proc. Conf., Mannheim, 1975)
Springer, Berlin, 1976, pp. 501–517. Lecture Notes in Math.,
Vol. 540. MR
0448323 (56 #6630)
 [RW]
M.
Rajagopalan and R.
Grant Woods, Products of sequentially compact
spaces and the 𝑉process, Trans. Amer.
Math. Soc. 232
(1977), 245–253. MR 0451219
(56 #9506), http://dx.doi.org/10.1090/S00029947197704512197
 [meR]
Mary
Ellen Rudin, A technique for constructing
examples, Proc. Amer. Math. Soc. 16 (1965), 1320–1323. MR 0188976
(32 #6403), http://dx.doi.org/10.1090/S00029939196501889760
 [St]
R.
M. Stephenson Jr., Initially 𝜅compact and related
spaces, Handbook of settheoretic topology, NorthHolland, Amsterdam,
1984, pp. 603–632. MR 776632
(86i:54024)
 [SS]
Victor
Saks and R.
M. Stephenson Jr., Products of 𝔪compact
spaces, Proc. Amer. Math. Soc. 28 (1971), 279–288. MR 0273570
(42 #8448), http://dx.doi.org/10.1090/S00029939197102735706
 [SSt]
C.
T. Scarborough and A.
H. Stone, Products of nearly compact
spaces, Trans. Amer. Math. Soc. 124 (1966), 131–147. MR 0203679
(34 #3528), http://dx.doi.org/10.1090/S00029947196602036797
 [V]
J.
E. Vaughan, Products of perfectly normal, sequentially compact
spaces, J. London Math. Soc. (2) 14 (1976),
no. 3, 517–520. MR 0464163
(57 #4098)
 [V]
J.
E. Vaughan, Products of [𝑎,𝑏]chain compact
spaces, Houston J. Math. 3 (1977), no. 4,
569–578. MR 0467672
(57 #7527)
 [V]
Jerry
E. Vaughan, Countably compact and sequentially compact spaces,
Handbook of settheoretic topology, NorthHolland, Amsterdam, 1984,
pp. 569–602. MR 776631
(86c:54022)
 [BFM]
 B. Balcar, R. Frankiewicz, and C. Mills, More on nowhere dense closed sets, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 28 (1980), 295299. MR 620204 (82i:54068)
 [B]
 A. R. Bernstein, A new kind of compactness for topological spaces, Fund. Math. 66 (1970), 185193. MR 0251697 (40:4924)
 [CN]
 W. W. Comfort and S. Negrepontis, The theory of ultrafilters, SpringerVerlag, Berlin and New York, 1974. MR 0396267 (53:135)
 [vD]
 Eric K. van Douwen, Hausdorff gaps and a nice countably paracompact nonnormal space, Topology Proc. 1 (1976), 239242.
 [vD]
 , The integers and topology, Handbook of SetTheoretic Topology (K. Kunen and J. Vaughan, eds.), NorthHolland, 1984, pp. 111167. MR 776619 (85k:54001)
 [vD]
 , The product of two normal initially compact spaces (to appear).
 [FR]
 S. P. Franklin and M. Rajagopalan, Some examples in topology, Trans. Amer. Math. Soc. 155 (1977), 305314. MR 0283742 (44:972)
 [H]
 S. H. Heckler, On the existence of certain cofinal subsets of , Axiomatic Set Theory (T. J. Jech, eds.), Amer. Math. Soc., Providence, R.I., 1967, pp. 155173. MR 0360266 (50:12716)
 [JNW]
 I. Juhász, Zs. Nagy, and W. Weiss, On countably compact, locally countable spaces, Period. Math. Hungar. 10 (1979), 193206. MR 539228 (80h:54025)
 [L]
 Ronnie Levy, Pseudocompactness and extension of functions in FranklinRajagopalan spaces, Topology Appl. 11 (1980), 297304. MR 585275 (82a:54042)
 [R]
 M. Rajagopalan, Some outstanding problems in topology and the process, Lecture Notes in Math., vol. 540, SpringerVerlag, Berlin and New York, 1975, pp. 501517. MR 0448323 (56:6630)
 [RW]
 M. Rajagopalan and R. Grant Woods, Products of sequentially compact spaces and the process, Trans. Amer. Math. Soc. 232 (1977), 245253. MR 0451219 (56:9506)
 [meR]
 M. E. Rudin, A technique for constructing examples, Proc Amer. Math. Soc. 16 (1965), 13201323. MR 0188976 (32:6403)
 [St]
 R. M. Stephenson, Jr., Initially compact and related spaces, Handbook of SetTheoretic Topology (K. Kunen and J. Vaughan, eds.), NorthHolland, 1984, pp. 603632. MR 776632 (86i:54024)
 [SS]
 V. Saks and R. M. Stephenson, Jr., Products of compact spaces, Proc. Amer. Math. Soc. 28 (1971), 279288. MR 0273570 (42:8448)
 [SSt]
 C. T. Scarborough and A. H. Stone, Products of nearly compact spaces, Trans. Amer. Math. Soc. 124 (1966), 131147. MR 0203679 (34:3528)
 [V]
 J. E. Vaughan, Products of perfectly normal sequentially compact spaces, J. London Math. Soc. 14, (1975), 517520. MR 0464163 (57:4098)
 [V]
 , Products of chain compact spaces, Houston J. Math. 3 (1977), 569578. MR 0467672 (57:7527)
 [V]
 , Countably compact and sequentially compact spaces, Handbook of SetTheoretic Topology (K. Kunen and J. Vaughan, eds.), NorthHolland, 1984, pp. 569602. MR 776631 (86c:54022)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
54D30,
03E35
Retrieve articles in all journals
with MSC:
54D30,
03E35
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029939198708970872
PII:
S 00029939(1987)08970872
Keywords:
FranklinRajagopalan space,
sequentially compact,
countably compact,
initially compact,
initially chain compact,
totally initially compact,
strongly compact,
product spaces,
points,
points,
RudinKeisler order,
towers,
Article copyright:
© Copyright 1987 American Mathematical Society
