Sequentially compact, Franklin-Rajagopalan spaces

Authors:
P. J. Nyikos and J. E. Vaughan

Journal:
Proc. Amer. Math. Soc. **101** (1987), 149-155

MSC:
Primary 54D30; Secondary 03E35

DOI:
https://doi.org/10.1090/S0002-9939-1987-0897087-2

MathSciNet review:
897087

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A locally compact -space is called a Franklin-Rajagopalan space (or FR-space) provided it has a countable discrete dense subset whose complement is homeomorphic to an ordinal with the order topology. We show that (1) every sequentially compact FR-space can be identified with a space constructed from a tower on , and (2) for an ultrafilter on , a sequentially compact FR-space is not -compact if and only if there exists an ultrafilter on such that , and is below in the Rudin-Keisler order on . As one application of these results we show that in certain models of set theory there exists a family of towers such that , and is a product of sequentially compact FR-spaces which is not countably compact (a new solution to the Scarborough-Stone problem). As further applications of these results, we give consistent answers to questions of van Douwen, Stephenson, and Vaughan concerning initially -chain compact and totally initially -compact spaces.

**[BFM]**B. Balcar, R. Frankiewicz, and C. Mills,*More on nowhere dense closed**-sets*, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys.**28**(1980), 295-299. MR**620204 (82i:54068)****[B]**A. R. Bernstein,*A new kind of compactness for topological spaces*, Fund. Math.**66**(1970), 185-193. MR**0251697 (40:4924)****[CN]**W. W. Comfort and S. Negrepontis,*The theory of ultrafilters*, Springer-Verlag, Berlin and New York, 1974. MR**0396267 (53:135)****[vD]**Eric K. van Douwen,*Hausdorff gaps and a nice countably paracompact non-normal space*, Topology Proc.**1**(1976), 239-242.**[vD]**-,*The integers and topology*, Handbook of Set-Theoretic Topology (K. Kunen and J. Vaughan, eds.), North-Holland, 1984, pp. 111-167. MR**776619 (85k:54001)****[vD]**-,*The product of two normal initially**-compact spaces*(to appear).**[FR]**S. P. Franklin and M. Rajagopalan,*Some examples in topology*, Trans. Amer. Math. Soc.**155**(1977), 305-314. MR**0283742 (44:972)****[H]**S. H. Heckler,*On the existence of certain cofinal subsets of*, Axiomatic Set Theory (T. J. Jech, eds.), Amer. Math. Soc., Providence, R.I., 1967, pp. 155-173. MR**0360266 (50:12716)****[JNW]**I. Juhász, Zs. Nagy, and W. Weiss,*On countably compact, locally countable spaces*, Period. Math. Hungar.**10**(1979), 193-206. MR**539228 (80h:54025)****[L]**Ronnie Levy,*Pseudocompactness and extension of functions in Franklin-Rajagopalan spaces*, Topology Appl.**11**(1980), 297-304. MR**585275 (82a:54042)****[R]**M. Rajagopalan,*Some outstanding problems in topology and the**-process*, Lecture Notes in Math., vol. 540, Springer-Verlag, Berlin and New York, 1975, pp. 501-517. MR**0448323 (56:6630)****[RW]**M. Rajagopalan and R. Grant Woods,*Products of sequentially compact spaces and the**process*, Trans. Amer. Math. Soc.**232**(1977), 245-253. MR**0451219 (56:9506)****[meR]**M. E. Rudin,*A technique for constructing examples*, Proc Amer. Math. Soc.**16**(1965), 1320-1323. MR**0188976 (32:6403)****[St]**R. M. Stephenson, Jr.,*Initially**-compact and related spaces*, Handbook of Set-Theoretic Topology (K. Kunen and J. Vaughan, eds.), North-Holland, 1984, pp. 603-632. MR**776632 (86i:54024)****[SS]**V. Saks and R. M. Stephenson, Jr.,*Products of**-compact spaces*, Proc. Amer. Math. Soc.**28**(1971), 279-288. MR**0273570 (42:8448)****[SSt]**C. T. Scarborough and A. H. Stone,*Products of nearly compact spaces*, Trans. Amer. Math. Soc.**124**(1966), 131-147. MR**0203679 (34:3528)****[V]**J. E. Vaughan,*Products of perfectly normal sequentially compact spaces*, J. London Math. Soc.**14**, (1975), 517-520. MR**0464163 (57:4098)****[V]**-,*Products of**-chain compact spaces*, Houston J. Math.**3**(1977), 569-578. MR**0467672 (57:7527)****[V]**-,*Countably compact and sequentially compact spaces*, Handbook of Set-Theoretic Topology (K. Kunen and J. Vaughan, eds.), North-Holland, 1984, pp. 569-602. MR**776631 (86c:54022)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
54D30,
03E35

Retrieve articles in all journals with MSC: 54D30, 03E35

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1987-0897087-2

Keywords:
Franklin-Rajagopalan space,
sequentially compact,
countably compact,
initially -compact,
initially -chain compact,
totally initially -compact,
strongly -compact,
product spaces,
-points,
-points,
Rudin-Keisler order,
towers,

Article copyright:
© Copyright 1987
American Mathematical Society