Sequentially compact, Franklin-Rajagopalan spaces

Authors:
P. J. Nyikos and J. E. Vaughan

Journal:
Proc. Amer. Math. Soc. **101** (1987), 149-155

MSC:
Primary 54D30; Secondary 03E35

DOI:
https://doi.org/10.1090/S0002-9939-1987-0897087-2

MathSciNet review:
897087

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A locally compact -space is called a Franklin-Rajagopalan space (or FR-space) provided it has a countable discrete dense subset whose complement is homeomorphic to an ordinal with the order topology. We show that (1) every sequentially compact FR-space can be identified with a space constructed from a tower on , and (2) for an ultrafilter on , a sequentially compact FR-space is not -compact if and only if there exists an ultrafilter on such that , and is below in the Rudin-Keisler order on . As one application of these results we show that in certain models of set theory there exists a family of towers such that , and is a product of sequentially compact FR-spaces which is not countably compact (a new solution to the Scarborough-Stone problem). As further applications of these results, we give consistent answers to questions of van Douwen, Stephenson, and Vaughan concerning initially -chain compact and totally initially -compact spaces.

**[BFM]**Bohuslav Balcar, Ryszard Frankiewicz, and Charles Mills,*More on nowhere dense closed 𝑃-sets*, Bull. Acad. Polon. Sci. Sér. Sci. Math.**28**(1980), no. 5-6, 295–299 (1981) (English, with Russian summary). MR**620204****[B]**Allen R. Bernstein,*A new kind of compactness for topological spaces*, Fund. Math.**66**(1969/1970), 185–193. MR**0251697****[CN]**W. W. Comfort and S. Negrepontis,*The theory of ultrafilters*, Springer-Verlag, New York-Heidelberg, 1974. Die Grundlehren der mathematischen Wissenschaften, Band 211. MR**0396267****[vD]**Eric K. van Douwen,*Hausdorff gaps and a nice countably paracompact non-normal space*, Topology Proc.**1**(1976), 239-242.**[vD]**Kenneth Kunen and Jerry E. Vaughan (eds.),*Handbook of set-theoretic topology*, North-Holland Publishing Co., Amsterdam, 1984. MR**776619****[vD]**-,*The product of two normal initially**-compact spaces*(to appear).**[FR]**S. P. Franklin and M. Rajagopalan,*Some examples in topology*, Trans. Amer. Math. Soc.**155**(1971), 305–314. MR**0283742**, https://doi.org/10.1090/S0002-9947-1971-0283742-7**[H]**Stephen H. Hechler,*On the existence of certain cofinal subsets of ^{𝜔}𝜔*, Axiomatic set theory (Proc. Sympos. Pure Math., Vol. XIII, Part II, Univ. California, Los Angeles, Calif., 1967) Amer. Math. Soc., Providence, R.I., 1974, pp. 155–173. MR**0360266****[JNW]**I. Juhász, Zs. Nagy, and W. Weiss,*On countably compact, locally countable spaces*, Period. Math. Hungar.**10**(1979), no. 2-3, 193–206. MR**539228**, https://doi.org/10.1007/BF02025892**[L]**Ronnie Levy,*Pseudocompactness and extension of functions in Franklin-Rajagopalan spaces*, Topology Appl.**11**(1980), no. 3, 297–303. MR**585275**, https://doi.org/10.1016/0166-8641(80)90029-2**[R]**M. Rajagopalan,*Some outstanding problems in topology and the 𝑉-process*, Categorical topology (Proc. Conf., Mannheim, 1975) Springer, Berlin, 1976, pp. 501–517. Lecture Notes in Math., Vol. 540. MR**0448323****[RW]**M. Rajagopalan and R. Grant Woods,*Products of sequentially compact spaces and the 𝑉-process*, Trans. Amer. Math. Soc.**232**(1977), 245–253. MR**0451219**, https://doi.org/10.1090/S0002-9947-1977-0451219-7**[meR]**Mary Ellen Rudin,*A technique for constructing examples*, Proc. Amer. Math. Soc.**16**(1965), 1320–1323. MR**0188976**, https://doi.org/10.1090/S0002-9939-1965-0188976-0**[St]**R. M. Stephenson Jr.,*Initially 𝜅-compact and related spaces*, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 603–632. MR**776632****[SS]**Victor Saks and R. M. Stephenson Jr.,*Products of 𝔪-compact spaces*, Proc. Amer. Math. Soc.**28**(1971), 279–288. MR**0273570**, https://doi.org/10.1090/S0002-9939-1971-0273570-6**[SSt]**C. T. Scarborough and A. H. Stone,*Products of nearly compact spaces*, Trans. Amer. Math. Soc.**124**(1966), 131–147. MR**0203679**, https://doi.org/10.1090/S0002-9947-1966-0203679-7**[V]**J. E. Vaughan,*Products of perfectly normal, sequentially compact spaces*, J. London Math. Soc. (2)**14**(1976), no. 3, 517–520. MR**0464163**, https://doi.org/10.1112/jlms/s2-14.3.517**[V]**J. E. Vaughan,*Products of [𝑎,𝑏]-chain compact spaces*, Houston J. Math.**3**(1977), no. 4, 569–578. MR**0467672****[V]**Jerry E. Vaughan,*Countably compact and sequentially compact spaces*, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 569–602. MR**776631**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
54D30,
03E35

Retrieve articles in all journals with MSC: 54D30, 03E35

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1987-0897087-2

Keywords:
Franklin-Rajagopalan space,
sequentially compact,
countably compact,
initially -compact,
initially -chain compact,
totally initially -compact,
strongly -compact,
product spaces,
-points,
-points,
Rudin-Keisler order,
towers,

Article copyright:
© Copyright 1987
American Mathematical Society