Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)


Chebyshev type estimates for Beurling generalized prime numbers

Author: Wen-Bin Zhang
Journal: Proc. Amer. Math. Soc. 101 (1987), 205-212
MSC: Primary 11N80; Secondary 11N37
MathSciNet review: 902528
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider a Beurling generalized prime system for which the distribution function $ N(x)$ of the integers satisfies

$\displaystyle \int_1^\infty {{x^{ - 1}}} \left\{ {\mathop {\sup }\limits_{x \leqslant y} \frac{{\left\vert {N(y) - Ay} \right\vert}} {y}} \right\}dx < \infty $

with constant $ A > 0$. We shall prove that the Chebyshev type estimates

$\displaystyle 0 < \mathop {\lim \inf }\limits_{x \to \infty } \frac{{\psi (x)}}... ...uad \mathop {\lim \sup }\limits_{x \to \infty } \frac{{\psi (x)}} {x} < \infty $

hold for the system. This gives a partial proof of one of Diamond's conjectures.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 11N80, 11N37

Retrieve articles in all journals with MSC: 11N80, 11N37

Additional Information

PII: S 0002-9939(1987)0902528-8
Article copyright: © Copyright 1987 American Mathematical Society

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia