Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Nonisomorphic algebraic structures on smooth manifolds


Authors: J. Bochnak and W. Kucharz
Journal: Proc. Amer. Math. Soc. 101 (1987), 424-426
MSC: Primary 32B99; Secondary 14G30
DOI: https://doi.org/10.1090/S0002-9939-1987-0908641-3
MathSciNet review: 908641
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Given a compact smooth hypersurface $ M$ in $ {{\mathbf{R}}^{n + 1}}$, we construct a family $ \left\{ {{X_k}} \right\},k = 1,2, \ldots $, of nonsingular real algebraic subsets of $ {{\mathbf{R}}^{n + 1}}$ such that each $ {X_k}$ is isotopic to $ M$ but, for $ k \ne l,{X_k}$ and $ {X_l}$ are not birationally equivalent.


References [Enhancements On Off] (What's this?)

  • [1] S. Akbulut and H. King, The topology of real algebraic sets, Enseign. Math. 29 (1983), 221-261. MR 719311 (86d:14016b)
  • [2] -, Submanifolds and homology of nonsingular real algebraic varieties, Amer. J. Math. 107 (1985), 45-83. MR 778089 (86m:14017)
  • [3] J. Bochnak, Relèvement des jets, Lecture Notes in Math., vol. 275 Springer-Verlag, Berlin and New York, 1972, pp. 106-118. MR 0377971 (51:14140)
  • [4] R. Hartshorne, Algebraic geometry, Springer-Verlag, Berlin and New York, 1977. MR 0463157 (57:3116)
  • [5] D. Mumford, Algebraic geometry. I, Springer-Verlag, Berlin and New York, 1978.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 32B99, 14G30

Retrieve articles in all journals with MSC: 32B99, 14G30


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1987-0908641-3
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society