Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On a family of elliptic surfaces with Mordell-Weil rank $ 4$


Author: Charles F. Schwartz
Journal: Proc. Amer. Math. Soc. 102 (1988), 1-8
MSC: Primary 14J27,; Secondary 11D41,11G99,14D10,14G25
DOI: https://doi.org/10.1090/S0002-9939-1988-0915705-8
MathSciNet review: 915705
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we find bases for the Mordell-Weil groups of a family of elliptic surfaces. In particular, let $ {E_{(a,b)}} \to B$ be the elliptic surface given by

$\displaystyle {y^2} = 4\left[ {{x^3} - \sum\limits_{i = 0}^2 {{a_i}{u^i}x + } \sum\limits_{j = 0}^3 {{b_j}{u^j}} } \right].$

If the elliptic surface has Mordell-Weil rank 4 over $ {\mathbf{C}}$, then we find a basis $ \{ {\sigma _i} = ({x_i},{y_i})\vert 1 \leq i \leq 4\} $ with $ {x_i}$ and $ {y_i}$, linear in $ u$. We do this by finding a parametrization of this family of elliptic surfaces; furthermore, if the parameters are rational numbers, then the Mordell-Weil group is rational over $ {\bf {Q}}$


References [Enhancements On Off] (What's this?)

  • [1] A. Brumer and K. Kramer, The rank of elliptic curves, Duke Math. J. 44 (1977), 715-743. MR 0457453 (56:15658)
  • [2] D. A. Cox and S. Zucker, Intersection numbers of sections of elliptic surfaces, Invent. Math. 53 (1979), 1-44. MR 538682 (81i:14023)
  • [3] F. J. Grunewald and R. Zimmert, Über einige Rationale Elliptische Kurven mit Freien Rang $ \geq 8$, J. Reine Angew. Math. 296 (1977), 100-107. MR 0466147 (57:6028)
  • [4] A. Kas, Weierstrass normal forms and invariants of elliptic surfaces, Trans. Amer. Math. Soc. 225 (1977), 259-266. MR 0422285 (54:10276)
  • [5] Ju. I. Manin, The Tate height of points on an abelian variety. Its variants and applications, Amer. Math. Soc. Transi. (2) 59 (1966), 82-110.
  • [6] K. Nakata, On some elliptic curves defined over $ Q$ of free rank $ \geq 9$, Manuscripta Math. 29 (1979), 183-194. MR 545040 (80k:14037)
  • [7] A. Néron, Problèmes arithmétiques et géométriques, rattachés a la notion de rang d'une courbe algébrique dans un corps, Bull. Soc. Math. France 80 (1952), 101-166. MR 0056951 (15:151a)
  • [8] -, Propriétés arithmétiques de certaines familles de courbes algébriques, Proc. Internat. Congress, Amsterdam (1954), vol. III, North-Holland, Amsterdam, 1956, pp. 481-488. MR 0087210 (19:321b)
  • [9] D. E. Penney and C. Pomerance, Three elliptic curves with rank at least seven, Math. Comp. 29 (1975), 965-967. MR 0376687 (51:12862)
  • [10] I. Šafarevič et al., Algebraic surfaces, Proc. Steklov Institute, Moscow, 1965; English transl., Amer. Math. Soc., Providence, R. I., 1967.
  • [11] C. F. Schwartz, A Mordell-Weil group of rank 8, and a subgroup of finite index, Nagoya Math. 93 (1984). MR 738915 (85j:14070)
  • [12] -, An elliptic surface with Mordell-Weil rank 8 over the rational numbers (in preparation).
  • [13] T. Shioda, On elliptic modular surfaces, J. Math. Soc. Japan 24 (1972), 20-57. MR 0429918 (55:2927)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 14J27,, 11D41,11G99,14D10,14G25

Retrieve articles in all journals with MSC: 14J27,, 11D41,11G99,14D10,14G25


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1988-0915705-8
Keywords: Elliptic surface, Mordell-Weil group, rational section, rational solution
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society