Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Necessary and sufficient conditions for the class number of a real quadratic field to be one, and a conjecture of S. Chowla


Author: R. A. Mollin
Journal: Proc. Amer. Math. Soc. 102 (1988), 17-21
MSC: Primary 11R29,; Secondary 11R11
DOI: https://doi.org/10.1090/S0002-9939-1988-0915707-1
MathSciNet review: 915707
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Based on the fundamental unit of $ Q\left( {\sqrt n } \right)$, an arbitrary real quadratic field, we provide a necessary condition for the class number $ h\left( n \right)$ to be 1. For $ n = 4{m^2} + 1$ we prove the equivalence of three necessary and sufficient conditions for $ h\left( n \right)$ to be 1. One of these conditions is that $ - {x^2} + x + {m^2}$ is prime for all integers $ x$ such that $ 1 < x < m$. This is the exact analogue of the complex quadratic field case. We discuss the connection with a conjecture of S. Chowla as well as with other related topics.


References [Enhancements On Off] (What's this?)

  • [1] R. G. Ayoub and S. Chowla, On Euler's polynomial, J. Number Theory 13 (1981), 443-445. MR 642919 (83h:10013)
  • [2] F. Callialp, Non-nullité des fonctions zeta des corps quadratiques réels pour $ 0 < s < 1$, C. R. Acad. Sci. Paris Sér. A-B 291 (1980), A623-A625. MR 606448 (82h:12014)
  • [3] S. Chowla and J. Friedlander, Class numbers and quadratic residues, Glasgow Math. J. 17 (1976), 47-52. MR 0417117 (54:5177)
  • [4] -, Some remarks on $ L$-functions and class numbers, Acta Arith. 28 (1975/76), 413-417. MR 0389852 (52:10682)
  • [5] G. Degert, Über die Bestimmung der Grundeinheit gewisser reellquadratischer Zahlkorper, Abh. Math. Sem. Univ. Hamburg 22 (1958), 92-97. MR 0092824 (19:1164d)
  • [6] L. Hongwen, On the real quadratic fields of class number one, Sci. Sinica 24 (1981), 1352-1357. MR 655938 (83i:12004)
  • [7] M. Kutsuna, On a criterion for the class number of a quadratic number field to be one, Nagoya Math. J. 79 (1980), 123-129. MR 587413 (81m:12006)
  • [8] D. H. Lehmer, On the function $ {x^2} + x + A$, Sphinx 6 (1936), 212-214.
  • [9] R. A. Mollin, On the insolubility of a class of diophantine equations and the nontriviality of the class numbers of related real quadratic fields of Richaud-Degert type, Nagoya Math. J. 105 (1987), 39-47. MR 881007 (88d:11105)
  • [10] -, Diophantine equations and class numbers, J. Number Theory 24 (1986), 7-19. MR 852186 (87i:11155)
  • [11] R. A. Mollin, Lower bounds for class numbers of real quadratic fields, Proc. Amer. Math. Soc. 96 (1986), 545-550. MR 826478 (88e:11113)
  • [12] J. Pintz, Elementary methods in the theory of $ L$-functions, VI. On the least prime quadratic residue $ \left( {\bmod p} \right)$, Acta Arith. 32 (1977), 173-178. MR 0485735 (58:5551e)
  • [13] G. Rabinovitch, Eindeutigkeit der Zerlegung in Primzahlfaktoren in Quadratischen Zahlkörpern, J. Reine Angew. Math. 142 (1913), 153-164.
  • [14] C. Richaud, Sur la résolution des équations $ {x^2} - A{y^2} = \pm 1$, Atti Accad. Pontif. Nuovi Lincei (1866), 177-182.
  • [15] H. M. Stark, A complete determination of the complex quadratic fields of class-number one, Michigan Math. J. 14 (1967), 1-27. MR 0222050 (36:5102)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 11R29,, 11R11

Retrieve articles in all journals with MSC: 11R29,, 11R11


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1988-0915707-1
Keywords: Class number 1, real quadratic field, prime valued polynomial
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society