Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the global dimension of a ring modulo its nilpotent radical


Authors: Ellen Kirkman and James Kuzmanovich
Journal: Proc. Amer. Math. Soc. 102 (1988), 25-28
MSC: Primary 16A60,; Secondary 16A33,16A38
DOI: https://doi.org/10.1090/S0002-9939-1988-0915709-5
MathSciNet review: 915709
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For any preassigned integer $ n \geq 3$, a Noetherian affine PI ring $ R$ is constructed with $ \operatorname{gl dim }R \leq 3$, but $ \operatorname{gl dim}\left( {R/N\left( R \right)} \right) = n$. A second similar ring is constructed with $ \operatorname{gl dim }R \leq 5$ and $ \operatorname{gl dim}\left( {R/N\left( R \right)} \right) = \infty $.


References [Enhancements On Off] (What's this?)

  • [AG] M. Auslander and O. Goldman, Maximal orders, Trans. Amer. Math. Soc. 97 (1960), 1-24. MR 0117252 (22:8034)
  • [ENN] S. Eilenberg, H. Nagao and T. Nakayama, On the dimension of modules and algebras. IV. Dimension of residue rings of hereditary rings, Nagoya Math. J. 10 (1956), 87-95. MR 0078981 (18:9e)
  • [F1] K. L. Fields, Examples of orders over discrete valuation rings, Math. Z. 111 (1969), 126-130. MR 0246913 (40:182)
  • [F2] -, On the global dimension of residue rings, Pacific J. Math. 32 (1970), 345-349. MR 0271166 (42:6049)
  • [GS] R. Gordon and L. W. Small, Piecewise domains, J. Algebra 23 (1972), 553-564. MR 0309984 (46:9087)
  • [KK] E. Kirkman and J. Kuzmanovich, Matrix subrings having finite global dimension, J. Algebra 109 (1987), 74-92. MR 898338 (88e:16043)
  • [McR] J. McConnell and J. C. Robson, Global dimension, preprint of Chapter 7 of Noncommutative Noetherian Rings, Wiley. MR 934572 (89j:16023)
  • [ReSS] R. Resco, L. W. Small and J. T. Stafford, Krull and global dimensions of semiprime Noetherian PI-rings, Trans. Amer. Math. Soc. 274 (1982), 285-295. MR 670932 (84g:16010)
  • [R] J. C. Robson, Some constructions of rings of finite global dimension, Glasgow Math. J. 26 (1985), 1-12. MR 776670 (86i:16026)
  • [RS] J. C. Robson and L. W. Small, Another change of rings theorem, Univ. of Leeds Preprint (1987). MR 940280 (89m:16048)
  • [S] L. W. Small, Hereditary rings, Proc. Nat. Acad. Sci. U.S.A. 55 (1966), 25-27. MR 0186720 (32:4178)
  • [St] J. T. Stafford, Global dimension of semiprime Noetherian rings, Univ. of Leeds Preprint (1987). MR 932060 (89c:16037)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 16A60,, 16A33,16A38

Retrieve articles in all journals with MSC: 16A60,, 16A33,16A38


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1988-0915709-5
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society