Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A generalized capacity and a uniqueness theorem on the dyadic group

Author: Kaoru Yoneda
Journal: Proc. Amer. Math. Soc. 102 (1988), 52-56
MSC: Primary 42C10
MathSciNet review: 915714
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we shall introduce a generalized capacity and give a necessary and sufficient condition for a subset of the dyadic group to be a $ U$-set for a certain class of Walsh series.

References [Enhancements On Off] (What's this?)

  • [1] J. P. Kahane and R. Salem, Ensembles parfaits et séries trigonométriques, Hermann, Paris, 1963. MR 0160065 (28:3279)
  • [2] W. R. Wade, Uniqueness and $ \alpha $-capacity on the group $ {2^\omega }$, Trans. Amer. Math. Soc. 208 (1975), 309-315. MR 0380255 (52:1155)
  • [3] W. R. Wade and K. Yoneda, Uniqueness and quasi-measure on the group of integers of a $ p$-series field, Proc. Amer. Math. Soc. 84 (1982), 202-206. MR 637169 (83c:43010)
  • [4] K. Yoneda, Sets of uniqueness for a certain class $ {\mathfrak{M}_\varepsilon }$ on the dyadic group, Proc. Amer. Math. Soc. 89 (1983), 279-284. MR 712637 (84m:42038)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 42C10

Retrieve articles in all journals with MSC: 42C10

Additional Information

Keywords: Walsh function, set of uniqueness, $ \alpha $-capacity
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society