Invariant subspaces for derivations

Author:
E. V. Kissin

Journal:
Proc. Amer. Math. Soc. **102** (1988), 95-101

MSC:
Primary 47D25,; Secondary 47A15

MathSciNet review:
915723

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this article it is proved that most of the known sufficient conditions for a subspace from Lat to be hyperinvariant are in fact also sufficient for this subspace to be invariant for all operators from Ad .

**[1]**R. G. Douglas and Carl Pearcy,*On a topology for invariant subspaces*, J. Functional Analysis**2**(1968), 323–341. MR**0233224****[2]**R. G. Douglas, Carl Pearcy, and Norberto Salinas,*Hyperinvariant subspaces via topological properties of lattices*, Michigan Math. J.**20**(1973), 109–113. MR**0341135****[3]**Peter A. Fillmore,*Notes on operator theory*, Van Nostrand Reinhold Mathematical Studies, No. 30, Van Nostrand Reinhold Co., New York-London-Melbourne, 1970. MR**0257765****[4]**E. V. Kissin,*On some reflexive algebras of operators and the operator Lie algebras of their derivations*, Proc. London Math. Soc. (3)**49**(1984), no. 1, 1–35. MR**743367**, 10.1112/plms/s3-49.1.1**[5]**E. V. Kissin,*On some reflexive operator algebras constructed from two sets of closed operators and from a set of reflexive operator algebras*, Pacific J. Math.**126**(1987), no. 1, 125–143. MR**868608****[6]**G. J. Murphy,*Hyperinvariant subspaces and the topology on 𝐿𝑎𝑡𝐴*, Pacific J. Math.**110**(1984), no. 1, 183–190. MR**722749****[7]**Peter Rosenthal,*A note on unicellular operators*, Proc. Amer. Math. Soc.**19**(1968), 505–506. MR**0222703**, 10.1090/S0002-9939-1968-0222703-6**[8]**J. G. Stampfli,*On hyponormal and Toeplitz operators*, Math. Ann.**183**(1969), 328–336. MR**0251571**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
47D25,,
47A15

Retrieve articles in all journals with MSC: 47D25,, 47A15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1988-0915723-X

Keywords:
Reflexive operator algebras,
topology of lattices,
hyperinvariant subspaces,
Lie algebra of derivations

Article copyright:
© Copyright 1988
American Mathematical Society