Invariant subspaces for derivations

Author:
E. V. Kissin

Journal:
Proc. Amer. Math. Soc. **102** (1988), 95-101

MSC:
Primary 47D25,; Secondary 47A15

DOI:
https://doi.org/10.1090/S0002-9939-1988-0915723-X

MathSciNet review:
915723

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this article it is proved that most of the known sufficient conditions for a subspace from Lat to be hyperinvariant are in fact also sufficient for this subspace to be invariant for all operators from Ad .

**[1]**R. Douglas and C. Pearcy,*On a topology for invariant subspaces*, J. Funct. Anal.**2**(1968), 323-341. MR**0233224 (38:1547)****[2]**R. Douglas, C. Pearcy, and N. Salinas,*Hyperinvariant subspaces via topological properties of lattices*, Michigan Math. J.**20**(1973), 109-113. MR**0341135 (49:5885)****[3]**P. Fillmore,*Notes on operator theory*, Van Nostrand Reinhold, New York, 1970. MR**0257765 (41:2414)****[4]**E. V. Kissin,*On some reflexive algebras of operators and the operator Lie algebras of their derivations*, Proc. London Math. Soc. (3)**49**(1984), 1-35. MR**743367 (85m:47048)****[5]**-,*On some reflexive operator algebras constructed from two sets of closed operators and from a set of reflexive algebras*, Pacific J. Math.**126**(1987), 125-143. MR**868608 (88b:47061)****[6]**G. J. Murphy,*Hyperinvariant subspaces and the topology on Lat*, Pacific J. Math.**110**(1984), 183-190. MR**722749 (86b:47007)****[7]**P. Rosenthal,*A note on unicellular operators*, Proc. Amer. Math. Soc.**19**(1968), 505-506. MR**0222703 (36:5753)****[8]**J. G. Stampfli,*On hyponormal and Toeplitz operators*, Math. Ann.**183**(1969), 328-336. MR**0251571 (40:4798)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
47D25,,
47A15

Retrieve articles in all journals with MSC: 47D25,, 47A15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1988-0915723-X

Keywords:
Reflexive operator algebras,
topology of lattices,
hyperinvariant subspaces,
Lie algebra of derivations

Article copyright:
© Copyright 1988
American Mathematical Society