Conformally natural extension of vector fields from to
Author:
Clifford J. Earle
Journal:
Proc. Amer. Math. Soc. 102 (1988), 145-149
MSC:
Primary 30C60,; Secondary 57R25
DOI:
https://doi.org/10.1090/S0002-9939-1988-0915733-2
MathSciNet review:
915733
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: Up to multiplication by a constant there is exactly one conformally natural continuous linear map from the space of continuous vector fields on to the space of continuous vector fields on
.
- [1] L. V. Ahlfors, Invariant operators and integral representations in hyperbolic space, Math. Scand. 36 (1975), 27-43. MR 0402036 (53:5859)
- [2]
-, Quasiconformal deformations and mappings in
, J. Analyse Math. 30 (1976), 74-97. MR 0492238 (58:11384)
- [3] A. Douady and C. J. Earle, Conformally natural extension of homeomorphisms of the circle, Acta Math. 157 (1986), 23-48. MR 857678 (87j:30041)
- [4] A. W. Knapp, Representation theory of semisimple groups: An overview based on examples, Princeton Math. Ser., Princeton Univ. Press, Princeton, N. J., 1986. MR 855239 (87j:22022)
- [5] H. M. Reimann, Invariant extension of quasiconformal deformations, Ann. Acad. Sci. Fenn. Ser. A I Math. 10 (1985), 477-492. MR 802511 (87a:30038)
- [6] W. P. Thurston, The geometry and topology of three-manifolds, Lecture Notes, Princeton Univ., Princeton, N. J., 1980.
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30C60,, 57R25
Retrieve articles in all journals with MSC: 30C60,, 57R25
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1988-0915733-2
Article copyright:
© Copyright 1988
American Mathematical Society