On the relation between -algebras of foliations and those of their coverings

Author:
Xiaolu Wang

Journal:
Proc. Amer. Math. Soc. **102** (1988), 355-360

MSC:
Primary 46L05,; Secondary 46L55,57R30,58G12

DOI:
https://doi.org/10.1090/S0002-9939-1988-0920999-9

MathSciNet review:
920999

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: By using the theory of groupoid equivalence of P. S. Muhly, J. N. Renault and D. P. Williams (cf. [**5, 7**]), we identify the relation between the -algebra of a foliated manifold and those of its regular covering foliations.

**[1]**Lawrence G. Brown, Philip Green, and Marc A. Rieffel,*Stable isomorphism and strong Morita equivalence of 𝐶*-algebras*, Pacific J. Math.**71**(1977), no. 2, 349–363. MR**0463928****[2]**A. Connes,*A survey of foliations and operator algebras*, Operator algebras and applications, Part I (Kingston, Ont., 1980) Proc. Sympos. Pure Math., vol. 38, Amer. Math. Soc., Providence, R.I., 1982, pp. 521–628. MR**679730****[3]**Morris W. Hirsch and Xiaolu Wang,*Foliations of planar regions and CCR 𝐶* algebras with infinite composition length*, Amer. J. Math.**109**(1987), no. 5, 797–806. MR**910351**, https://doi.org/10.2307/2374488**[4]**M. Hilsum and G. Skandalis,*Stabilité des 𝐶*-algèbres de feuilletages*, Ann. Inst. Fourier (Grenoble)**33**(1983), no. 3, 201–208 (French, with English summary). MR**723953****[5]**Paul S. Muhly, Jean N. Renault, and Dana P. Williams,*Equivalence and isomorphism for groupoid 𝐶*-algebras*, J. Operator Theory**17**(1987), no. 1, 3–22. MR**873460****[6]**J. N. Renault,*A groupoid approach to**-algebras*, Lecture Notes in Math., vol. 793, Springer-Verlag, Berlin and New York, 1980.**[7]**Jean N. Renault,*𝐶*-algebras of groupoids and foliations*, Operator algebras and applications, Part I (Kingston, Ont., 1980) Proc. Sympos. Pure Math., vol. 38, Amer. Math. Soc., Providence, R.I., 1982, pp. 339–350. MR**679714****[8]**Marc A. Rieffel,*Applications of strong Morita equivalence to transformation group 𝐶*-algebras*, Operator algebras and applications, Part I (Kingston, Ont., 1980) Proc. Sympos. Pure Math., vol. 38, Amer. Math. Soc., Providence, R.I., 1982, pp. 299–310. MR**679709****[9]**Anne Marie Torpe,*𝐾-theory for the leaf space of foliations by Reeb components*, J. Funct. Anal.**61**(1985), no. 1, 15–71. MR**779738**, https://doi.org/10.1016/0022-1236(85)90038-2**[10]**X. Wang,*On the**-algebras of a family of solvable Lie groups and foliations*, Ph.D. Dissertation, Univ. of California, Berkeley, 1985.**[11]**-,*On the classification of**-algebras of Morse-Smale flows on two-manifolds*, Ergodic Theory Dynamical Systems (to appear).**[12]**-,*On the**-algebras of foliations of the plane*, Lecture Notes in Math., vol. 1257, Springer-Verlag, Berlin and New York.**[13]**Robert J. Zimmer,*Arithmeticity of holonomy groups of Lie foliations*, J. Amer. Math. Soc.**1**(1988), no. 1, 35–58. MR**924701**, https://doi.org/10.1090/S0894-0347-1988-0924701-4**[14]**T. Fack and X. Wang,*-algebras of Reeb foliations*, preprint, 1986.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
46L05,,
46L55,57R30,58G12

Retrieve articles in all journals with MSC: 46L05,, 46L55,57R30,58G12

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1988-0920999-9

Article copyright:
© Copyright 1988
American Mathematical Society