Approximation of the sphere by polytopes having few vertices

Authors:
I. Bárány and Z. Füredi

Journal:
Proc. Amer. Math. Soc. **102** (1988), 651-659

MSC:
Primary 52A40; Secondary 52A22

DOI:
https://doi.org/10.1090/S0002-9939-1988-0928998-8

MathSciNet review:
928998

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: How well can a polytope with vertices approximate the unit ball of the -dimensional Euclidean space? The answer is quite well known when is fixed and tends to infinity. In this paper the same question is answered when is a function of (a polynomial in , say) and tends to infinity. Some applications of the results are also indicated.

**[1]**Imre Bárány and Zoltán Füredi,*Computing the volume is difficult*, Discrete Comput. Geom.**2**(1987), no. 4, 319–326. MR**911186**, https://doi.org/10.1007/BF02187886**[2]**-,*On the convex hull of random points*, Probability Theory and Related Fields (to appear).**[3]**C. Buchta, J. Müller, and R. F. Tichy,*Stochastical approximation of convex bodies*, Math. Ann.**271**(1985), no. 2, 225–235. MR**783553**, https://doi.org/10.1007/BF01455988**[4]**L. Danzer, B. Grünbaum and V. Klee,*Helly's theorem and its relatives*, Proc. Sympos. Pure Math., vol. 7, Amer. Math. Soc., Providence, R. I., 1963, pp. 101-180.**[5]**R. M. Dudley,*Metric entropy of some classes of sets with differentiable boundaries*, J. Approximation Theory**10**(1974), 227–236. MR**0358168****[6]**G. Elekes,*A geometric inequality and the complexity of computing volume*, Discrete Comput. Geom.**1**(1986), no. 4, 289–292. MR**866364**, https://doi.org/10.1007/BF02187701**[7]**L. Fejes Tóth,*Regular figures*, A Pergamon Press Book, The Macmillan Co., New York, 1964. MR**0165423****[8]**Peter M. Gruber,*Approximation of convex bodies*, Convexity and its applications, Birkhäuser, Basel, 1983, pp. 131–162. MR**731110****[9]**Peter M. Gruber and Petar Kenderov,*Approximation of convex bodies by polytopes*, Rend. Circ. Mat. Palermo (2)**31**(1982), no. 2, 195–225. MR**670396**, https://doi.org/10.1007/BF02844354**[10]**L. Lovász,*An algorithmic theory of numbers, graphs and convexity*, Report No. 85368-OR, Univ. Bonn, 1985.**[11]**A. M. Macbeath,*An extremal property of the hypersphere*, Proc. Cambridge Philos. Soc.**47**(1951), 245–247. MR**0039292****[12]**Rolf Schneider,*Zur optimalen Approximation konvexer Hyperflächen durch Polyeder*, Math. Ann.**256**(1981), no. 3, 289–301 (German). MR**626950**, https://doi.org/10.1007/BF01679698**[13]**Rolf Schneider and John André Wieacker,*Approximation of convex bodies by polytopes*, Bull. London Math. Soc.**13**(1981), no. 2, 149–156. MR**608101**, https://doi.org/10.1112/blms/13.2.149

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
52A40,
52A22

Retrieve articles in all journals with MSC: 52A40, 52A22

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1988-0928998-8

Article copyright:
© Copyright 1988
American Mathematical Society