Approximation of the sphere by polytopes having few vertices

Authors:
I. Bárány and Z. Füredi

Journal:
Proc. Amer. Math. Soc. **102** (1988), 651-659

MSC:
Primary 52A40; Secondary 52A22

DOI:
https://doi.org/10.1090/S0002-9939-1988-0928998-8

MathSciNet review:
928998

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: How well can a polytope with vertices approximate the unit ball of the -dimensional Euclidean space? The answer is quite well known when is fixed and tends to infinity. In this paper the same question is answered when is a function of (a polynomial in , say) and tends to infinity. Some applications of the results are also indicated.

**[1]**I. Bárány and Z. Füredi,*Computing the volume is difficult*, Discrete and Computational Geometry**2**(1987), 319-326 and Proc. 18th ACM STOC, 1986, pp. 442-447. MR**911186 (89a:68203)****[2]**-,*On the convex hull of random points*, Probability Theory and Related Fields (to appear).**[3]**C. Buchta, J. Müller and R. F. Tichy,*Stochastical approximation of convex bodies*, Math. Ann.**271**(1985), 225-235. MR**783553 (86g:52009)****[4]**L. Danzer, B. Grünbaum and V. Klee,*Helly's theorem and its relatives*, Proc. Sympos. Pure Math., vol. 7, Amer. Math. Soc., Providence, R. I., 1963, pp. 101-180.**[5]**R. Dudley,*Metric entropy of some classes of sets with differentiable boundaries*, J. Approx. Theory**10**(1974), 227-236; Correction, ibid.**26**(1979), 192-193. MR**0358168 (50:10633)****[6]**G. Elekes,*A geometric inequality and the complexity of computing the volume*, Discrete and Computational Geometry**1**(1986), 289-292. MR**866364 (87k:68138)****[7]**L. Fejes-Tóth,*Regular figures*, Pergamon Press, 1964. MR**0165423 (29:2705)****[8]**P. M. Gruber,*Approximation of convex bodies*, Convexity and its Applications (P. M. Gruber and J. M. Wills, eds.), Birkhäuser, 1983, pp. 131-162. MR**731110 (85d:52001)****[9]**P. M. Gruber and P. Kendarov,*Approximation of convex bodies by polytopes*, Rend. Circ. Mat. Palermo**31**(1982), 195-225. MR**670396 (84d:52004)****[10]**L. Lovász,*An algorithmic theory of numbers, graphs and convexity*, Report No. 85368-OR, Univ. Bonn, 1985.**[11]**A. M. Macbeath,*An extremal property of the hypersphere*, Proc. Cambridge Philos. Soc.**47**(1951), 245-247. MR**0039292 (12:526e)****[12]**R. Schneider,*Zur optimalen Approximation konvexer Hyperflächen durch Polyeder*, Math. Ann.**256**(1981), 289-301. MR**626950 (82m:52003)****[13]**R. Schneider and J. A. Wieacker,*Approximation of convex bodies by polytopes*, Bull. London Math. Soc.**13**(1981), 149-156. MR**608101 (82g:52008)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
52A40,
52A22

Retrieve articles in all journals with MSC: 52A40, 52A22

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1988-0928998-8

Article copyright:
© Copyright 1988
American Mathematical Society