Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Weak-star generators of $ Z\sp n,\;n\geq 1,$ and transitive operator algebras


Author: Mohamad A. Ansari
Journal: Proc. Amer. Math. Soc. 103 (1988), 131-136
MSC: Primary 46J15; Secondary 30H05, 47B35
DOI: https://doi.org/10.1090/S0002-9939-1988-0938656-1
MathSciNet review: 938656
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A function $ f$ in $ {H^\infty }$ is said to be a weak-star generator ( $ {{\text{W}}^*}$-gen.) of the function $ {e_n}\left( z \right) = {z^n},\,\vert z\vert < 1,\,n \geq 1$, if $ {\lim _\alpha }{p_\alpha } \circ f = {e_n}$ ( $ {{\text{W}}^*}$-topology), for some net ( $ {p_\alpha }$) of complex polynomials. For the case $ n = 1$, $ f$ is called a $ {{\text{W}}^*}$-gen. of $ {H^\infty }$. The $ {{\text{W}}^*}$-generators of $ {H^\infty }$ have been defined and characterized by Sarason. It is the purpose of the present paper to give necessary and sufficient conditions for a function to generate $ {e_n}$. As a result, it follows from our characterization that certain analytic Toeplitz operators have the transitive algebra property.


References [Enhancements On Off] (What's this?)

  • [1] M. A. Ansari, Transitive algebra containing triangular operator matrices, J. Operator Theory 14 (1985), 173-180. MR 789383 (86h:47072)
  • [2] -, Reductive algebras containing a direct sum of the unilateral shift and a certain other operator are selfadjoint, Proc. Amer. Math. Soc. 93 (1985), 284-286. MR 770537 (86c:47053)
  • [3] -, Perturbations of the unilateral shift and transitive operator algebras, Proc. Amer. Math. Soc. 101 (1987), 455-461. MR 908648 (89a:47062)
  • [4] H. Radjavi and P. Rosenthal, Invariant subspaces, Springer-Verlag, 1972. MR 0367682 (51:3924)
  • [5] D. Sarason, Invariant subspaces and unstared operator algebras, Pacific J. Math. 17 (1966), 511-517. MR 0192365 (33:590)
  • [6] -, Weak-star generators of $ {H^\infty }$, Pacific J. Math. 17 (1966), 519-528. MR 0211269 (35:2151)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46J15, 30H05, 47B35

Retrieve articles in all journals with MSC: 46J15, 30H05, 47B35


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1988-0938656-1
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society