Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Browder spectral systems


Authors: Raúl E. Curto and A. T. Dash
Journal: Proc. Amer. Math. Soc. 103 (1988), 407-413
MSC: Primary 47A10; Secondary 47D99
DOI: https://doi.org/10.1090/S0002-9939-1988-0943057-6
MathSciNet review: 943057
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For two spectral systems $ {\sigma _1}$ and $ {\sigma _2}$ on a Banach space $ \mathcal{X}$, the associated Browder spectral system is $ {\sigma _{b;1,2}}: = {\sigma _1} \cup {\sigma '_2}$. We prove that $ {\sigma _{b;1,2}}$ possesses the projection and spectral mapping properties whenever $ {\sigma _1}$ and $ {\sigma _2}$ do (and satisfy a few additional mild assumptions). We also calculate $ {\sigma _{b;1,2}}$ for tensor products. The results extend several previous works on Browder spectra.


References [Enhancements On Off] (What's this?)

  • [1] J. J. Buoni, A. T. Dash, and B. L. Wadhwa, Joint Browder spectrum, Pacific J. Math. 94 (1981), 259-263. MR 628578 (82i:47005)
  • [2] Z. Ceauşescu and F.-H. Vasilescu, Tensor products and the joint spectrum in Hilbert spaces, Proc. Amer. Math. Soc. 72 (1978), 505-508. MR 509243 (80b:47003)
  • [3] R. E. Curto, Connections between Harte and Taylor spectra, Rev. Roumaine Math. Pures Appl. 31 (1986), 203-215. MR 847027 (87h:47009)
  • [4] -, Applications of several complex variables to multiparameter spectral theory, Survey of Recent Results in Operator Theory, vol. II, J. B. Conway (editor), Longman (to appear).
  • [5] R. E. Curto and L. A. Fialkow, The spectral picture of $ ({L_A},{R_B})$, J. Funct. Anal. 71 (1987), 371-392. MR 880986 (88c:47006)
  • [6] A. T. Dash, Joint Browder spectra and tensor products, Bull. Austral. Math. Soc. 32 (1985), 119-128. MR 811295 (87e:47006)
  • [7] J. Eschmeier, Tensor products and elementary operators, preprint, 1986. MR 953676 (89h:47048)
  • [8] L. A. Fialkow, Spectral properties of elementary operators. II, Trans. Amer. Math. Soc. 290 (1985), 415-429. MR 787973 (86j:47005)
  • [9] B. Gramsch and D. Lay, Spectral mapping theorems for essential spectra, Math. Ann. 192 (1971), 17-32. MR 0291846 (45:936)
  • [10] R. E. Harte, Tensor products, multiplication operators and the spectral mapping theorem, Proc. Roy. Irish Acad. 73A (1973), 285-302. MR 0328642 (48:6984)
  • [11] M. Putinar, Functional calculus and the Gelfand transformation, Studia Math. 79 (1984), 83-86. MR 772008 (86c:46056)
  • [12] M. Schecter and M. Snow, The Fredholm spectrum on tensor products, Proc. Roy. Irish Acad. 75A (1975), 121-127. MR 0377557 (51:13728)
  • [13] Z. Słodkowski, An infinite family of joint spectra, Studia Math. 61 (1977), 239-255. MR 0461172 (57:1157)
  • [14] M. Snow, A joint Browder essential spectrum, Proc. Roy. Irish Acad. 75A (1975), 129-131. MR 0385611 (52:6471)
  • [15] J. L. Taylor, A joint spectrum for several commuting operators, J. Funct. Anal. 6 (1970), 172-191. MR 0268706 (42:3603)
  • [16] -, The analytic functional calculus for several commuting operators, Acta Math. 125 (1970), 1-38. MR 0271741 (42:6622)
  • [17] W. Żelazko, Banach algebras, Elsevier, New York, 1973.
  • [18] -, An axiomatic approach to joint spectra. I, Studia Math. 64 (1979), 250-261. MR 544729 (80h:46076)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47A10, 47D99

Retrieve articles in all journals with MSC: 47A10, 47D99


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1988-0943057-6
Keywords: Spectral system, Browder joint spectra, projection property, tensor products
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society