Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Bounded sequence-to-function Hausdorff transformations


Author: Constantine Georgakis
Journal: Proc. Amer. Math. Soc. 103 (1988), 531-542
MSC: Primary 40G05; Secondary 26D10, 47B38
DOI: https://doi.org/10.1090/S0002-9939-1988-0943080-1
MathSciNet review: 943080
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let

$\displaystyle \left( {Ta} \right)\left( y \right) = \sum\limits_{n = 0}^\infty ... ...rac{{{g^{\left( n \right)}}\left( y \right)}}{{n!}}{a_{n,\quad }}\quad y \geq 0$

be the sequence-to-function Hausdorff transformation generated by the completely monotone function $ g$ or, what is equivalent, the Laplace transform of a finite positive measure $ \sigma $ on $ [0,\infty )$. It is shown that for $ 1 \leq p \leq \infty $, $ T$ is a bounded transformation of $ {l^p}$ with weight $ \Gamma \left( {n + s + 1} \right) / n!$ into $ {L^p}[0,\infty )$ with weight $ {y^s},s > - 1$, whose norm $ \left\Vert T \right\Vert = \int_0^\infty {{t^{ - \left( {1 + s} \right) / p}}} d\sigma \left( t \right) = C\left( {p,s} \right)$ if and only if $ C\left( {p,s} \right) < \infty $, and that for $ 1 < p < \infty ,{\left\Vert {Ta} \right\Vert _{p,s}} < C\left( {p,s} \right){\left\Vert a \right\Vert _{p,s}}$ unless $ {a_n}$ is a null sequence. Furthermore, if $ 1 < p < r < \infty ,\,\;0 < \lambda < 1$ and $ \sigma $ is absolutely continuous with derivatives $ \psi $ such that the function $ {\psi _r}\left( t \right) = {t^{ - 1 / r}}\psi \left( t \right)$ belongs to $ {L^{1 / \lambda }}[0,\infty )$, then the transformation $ \left( {{T_\lambda }a} \right)\left( y \right) = {y^{1 - \lambda }}\left( {Ta} \right)\left( y \right)$ is bounded from $ {l^p}$ to $ {L^r}[0,\infty )$ and has norm $ \left\Vert {{T_\lambda }} \right\Vert \leq {\left\Vert {{\psi _r}} \right\Vert _{1 / \lambda }}$. The transformation $ T$ includes in particular the Borel transform and that of generalized Abel means. These results constitute an improved analogue of a theorem of Hardy concerning the discrete Hausdorff transformation on $ {l^p}$ which corresponds to a totally monotone sequence, and lead to improved forms of some inequalities of Hardy and Littlewood for power series and moment sequences.

References [Enhancements On Off] (What's this?)

  • [1] D. Borwein, On a scale of Abel-summability methods, Proc. Cambridge Philos. Soc. 53 (1957), 318-322. MR 0086158 (19:134f)
  • [2] G. H. Hardy, An inequality for Hausdorff means, J. London Math. Soc. 18 (1943), 45-49. MR 0008854 (5:65b)
  • [3] -, Divergent series, Chapter XI, Clarendon Press, Oxford, 1949. MR 0030620 (11:25a)
  • [4] G. H. Hardy and J. E. Littlewood, Elementary theorems concerning power series and moment constants, J. für Mat. 157 (1927), 141-158.
  • [5] G. H. Hardy, J. E. Littlewood and G. Pölya, Inequalities, Cambridge Univ. Press, 1967.
  • [6] O. Henriksson, Über die Hausdorffsche Limitierungsverfahren die schwacher sind als das Abelsche, Math. Z. 39 (1935), 501-510. MR 1545514
  • [7] A. Jakimovski, The sequence-to-function analogues to Hausdorff transformations, Bull. Res. Council of Israel Sect. 8F (1960), 135-154. MR 0126095 (23:A3391)
  • [8] K. Knopp, Über Reihen mit positiven Griedern, J. London Math. Soc. 30 (1930), 13-21.
  • [9] D. Leviatan and L. Lorch, A characterization of totally regular $ \left[ {J,f\left( x \right)} \right]$ transforms, Proc. Amer. Math. Soc. 23 (1969), 315-319. MR 0246014 (39:7320)
  • [10] A. Renyi, Summation methods and probability theory, Publ. Math. Inst. Hungar Acad. Sci. 4 (1959), 389-397. MR 0130701 (24:A561)
  • [11] D. Widder, The Laplace transform, Princeton Univ. Press, 1946. MR 0005923 (3:232d)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 40G05, 26D10, 47B38

Retrieve articles in all journals with MSC: 40G05, 26D10, 47B38


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1988-0943080-1
Keywords: Hausdorff, transformation, bounded, Abel means, Borel transform, completely monotone, power series, moments
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society